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CRAPTER I

INTRODUCTION

1.1 General Background

Locomotion can be defined as the process of movement from one
place to another. Throughout recorded history, man has been fascinated
hy the locowotion of various types of animals on land, under water, and
in the air. For example, drawings of various animals found on the walls
of cave dwellings are testimony to the interest that prehistoric civili-
zations had in the locomotion of animals. Locomotion studies were made
around the third century 3. C. by Aristotle and his associates [1]. In
latter periods of hiatory, specifically during the eighteenth and nine-
teenth centuries, doctors and scientists both in Europe and America, con-
ducted various studies dealing with different aspects of legped locomo-
ticn. Some of the topics of study were: 1) Anatomical studies to deter-
rine the center of gravity of the human body {2-4], 2) Studies of the
types of muscles that came into play during walking [2,5], 3) Photogra-
phic ctudies of human und animal gaits [6-8], &) The kinematics and
dynamics invclved in human locomotion {9-12].

Recently, with the emergence of the field of Biogngineeting,
scientists and engineers have begun to take & fresn look it the instru-
rentation, the diagnoatic techniques, and the types of devices used by

the medical profession with a view toward their improvement. One
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of the areas in which such interdisplinary research is being conducted

is the study of legged locomotion systems. Hopefully, the development of
a sound mathematical basis for ‘egged locomotion systems which includes
system dynamics, should lead to better limb coordinmation control schemes.
Computer Jimulations of both kinematic and dynamic models of legged
locomution systems are useful ian the design and development of better
and wore efficient prosthetic and orthotlic devices, as well as in the

design of automatic feedback controllers for legged vehicles.

1.2 Objectives and Limitaiions of the Dissertation
The objectives of this dissertation are obtain answers to some of
tha problems concerned with the dynamic stability and 1limb coordination
control of legged locomotion systems. The techniques of vibrational
analysis are used to obtain stable postural control of legged locomotion
systems. The application of certain stability criteria on these systems
is also discussed. Digital computer simulations are used to obtain
dynamically stable gaits for idcalized models of human and animal
locomotion,
This research has the following limitations:
1) The models investigated consist of 3 single rigid body
supported by massless legs.
2) The type of control used in the simulations presented in this
dissertation produces "marching” type of limb coordination,
that is, the model is assumed to move at a constant velocity

on level ground, in the desired direction of motion
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placing its feet regularly at specified intervals of bot.

zv/h(

time and space.

Other types of control schemes and locomotion systems with leg

possomiy

mass are ot considered in this dissertation.

4y

1.3 Organization of the Dissertation

Chapier I provides a brief historical introduction to the general

powasny

oroblem of legged locomotion. The objectives and limitations of the

]
Crvsrrnsn 4

dissertation are discussed in Section 1.2. 1a conclusion, 3 summary of

the contents of each chapter is given.

T
i d

Kius s

Chapter II contains a short survey of the extensive literature

]

that is avallabie on the problem of legged Jocomotivn. Specifically,

(L0 L

3,

this cnapter breaks down the general study of legged lo:zomotion systems

1

[ errereey

o

in terms of: 1) finite state models, 2 kinematic models, 3) dynamic

models.

Yy

Chapter III presents the genersl equations of motion for an

n-legged locomotion system. Also, the equations of motion of a type of

| Eeaeie ]

inverted pendulum system that fs used in this dissertation are derived.

Aein )

Chapter IV provides the core of the theoretical considerations

describing the method of postural control system mode analysis. After

fhak

discussing the theory involved in the mode :interpretation of free motion

of legged locomotion systems, the small anglie equations of motion are

S

derived for a quadruped. This chapter concludes with a derivation of

g

the iinearized equations of motion c¢f the inverted pendulum system

discussed in Chapter I11I.

Chapter V gives a brief insight into the problem of determining the

eigenvalues and eigenvectors of real, non-symmetric, square, general

AR

=




matrices. The chapter concludes with a discussion of the application
of these methods for obtaining the eigenvalues and eigenvectors for the
various modal matrices derived in Chapter IV,

Chapter VI is devoted to the problem of stability and control of
the locomotion systems studied in this dissertation. The type of con-
trol used for the n-legged locomotion system, nameiry, model reference
control is described. Then, the necessary and sufficient conditions for
the small motion stability of the quadruped locomotion system are
obtained using the Routh-Hurwitz criterion on the linearized equations
of motion of these systems. Finally, in Sectiorn 6.7 the application of
these stability criteria for obtaining stable biped and quadruped gaits
is discussed.

Chapter VII describes the results of computer simulation conduc-
ted during the course of this research. In Section 7.2, the nonlinear
quadruped simulation is verified by the application of vibrational ana-
lysis to the quadruped postural system. Computer output data is presen-
ted te show correspondence between the nonlinear and linearized system
responses to within one part in 106, Details of the simulation of
quadruped gaics such as the crawl, the walk, and the trot are given in
Section 7.3. Section 7.4 is devoted to the results of digital computer
simulation of an inverted pendulum wit., the mass pivoted at a distance
below its center of gravity and supportaed by a massless leg with a
"fixed" fcot. Both the transient response, as well as the results of
the Routh-Hurwitz analysis are presented in this section. Section 7.5
covers the application of the inverted pendulum stability criteria in

the development of the simulation of a stablz quadruped pace gait.

R P
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Finelly, Section 7,6 discusses a type of biped gait simulated in the
course of this research.

Cihapter VIII summarizes the results of this research, and out-
lines topics for further researcl in the area of legged locomotion
system studies,

Finally, 2 listing of the comptter programs with explanations

as well as a list of references is given in the appendices,
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CHAPTER II

SURVEY OF PREVIOUS WORK

2.1 Introduction

This chapter attempts to give a brief overview of the large
amount of literature that is available in the area of legged locomotion
system studies. The available literature comes from the following
areas among others: biomechanics, kinesiology, prosthetlcs, orthotics,
etc. Some aspects of the general problem of legged locomotion have
been mentioned in Section 1.1 which gives an idea of the historical
development of this area of research,

The study of legged locomotion systems is described in terms of
three types of models, 1) finite state models, 2} kinematic models, and
3) dynamic models, Section 2.2 covers the theory of finite state
machines as applied to locomotion systems considering a leg as being in
one of two states, either on the ground (supporting phase) or in the
alr (swing phase). The kinematic aspects of locomotion are discussed
in Section 2.3, which presents the work being done in the area of time
and motion gtudies of human and animal gaits., Section 2.4 surveys the
work done in tL. modeling of legged locomotion systems including their

system dynamics,

2.2 Finite State Models

The application of the thecry of finite state automata to legged

6
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locomoi:ion systems was first suggested by Tomcvic and Kaerplus [13,14].
Based on their work, McGhee [15] developed a finit- state theory for
legged locomotion. He considered each leg as a sequential machine with
binary output, and defined a number of basic concepts such as gait, gait
matrices, duration vector, duty factor, etc. Using these basic defini-
tions, he classified gaits into regular gaits, symmetric gaits, connected
gaits, etc, and postulated theorems defining their properties. This
finite state theory was used by McGhee and Frank [16] to develop criteria
for selecting optimum gaits for low speed locomotion of an idealized
quadruped system. They showed that the optimum gait for low speed loco-
motion of an idealized quadruped model corresponds to the crawl, the low
speed gait preferred by most natural quadrupeds.

To test the validity of the finite state theory of legged locomo-
tion, a small artificial quadruped with four identical legs, each with a
powered hip joint, and knee joint was constructed at the University of
Southern California [17]. A small special purpose dipgital computer was
used for the coo dination of joint motion of this machine, thus proving
that automatic limb coordination control of legged locomotion systems
such as the quadruped could be achieved by simple finite state algori-
thms.

Finite state control of legged locomotion systems implies that
the system is statically stable at all times. Both "synchronous” and
"asynchronous" types of control were used successfully with this machine
[18). fHowever, simple finite state conirol mechanisms for biped loccmo-
tion have not been emonstrated so far.

Recant work in the area of finite state aspects of locomotion
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has dealt with the properties of regularly rezlizable gait matrices.

Jain {19], has applied the tecnniques of l¥near programming for determi-
ning the number of regularly realizable nonsingular gaits for bipeds und
quadrupeds. He found that out of the 5040 nonsingular quadruped gaits,

there were a total of 480 regularly realizable nonsingular zaits which

could be reduced to 44 equivalence classes. At least 11 of these 44

equivalence classes of regularly realizable gaits were found to be the

natural gait of some animal from the work of Roberts [20], and Hildebrand

f211.

Legged locomotion systems possess a large number of degrees of

freedom, and are by nature very nonlinear. The development of a finite

state theory for legged locomotion systeps was one of the first systema-
tic approaches to the mathematical analysis of these complex systems.
This study has been a natural extension of the work of earlier investiga-

tors such as, Muybridge, Roberts, Hildebrand, among others who attempted

to classify human and animal locomotion by various methods.

2.3 Kinematic Models

This section reviews work done in the area of kinematic studies of

legged locomotion systems. Typically, research in this area involves

the study of human and animal gaits disregarding the forces associated

with these motions.

!Motion and time studies of human and animal locomotion have been

made by man throughout reccrded history. During the 17th century,

Borelli [22], a professor of mathematics in Naples, Italy, determired the

position of the center of gravity in man and in animals, and related it

to the locomotiun of various species., He drew an analegy between the
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g‘ bones and levers, and the muscles and the forces acting on *hese
) levers.
g- Marey [23] published a series of books between 1873 and 1895.
_ ie invented a pneumatic method of registering scientific experiments a
L short di -nce away from where the event takes place, The device
I callad Marey Tambours, consisted of two lever drums connected by rubber
tubing to the subject, For studying locomotion, these lever drums were
g used for recording the motion of various parts of the human body.
Marey also developed the chronophotographic method for recordirg
{] gait [6]. In this method, successive exposures are made on the same
g] photographic plate by means of a rotating mechanism inside the camera.
The subject dressed in light clothing, walks in front of a black back-
g] ground. Braune and Fischer [24], used a variation of Marev's method to
show only points and iines on the phctograph. In their method, called
{ geometric chronophotography, the subject was dressed entirely in black

with brilliant metal buttons or shining bands attached to the clothing

oy

to mark the joints and tone segments.

Eadward Muybridge [25,26], was the first to analyze animal and

s

liuman notion by photographic studies begun in 1872, His werk consisted
of closely spaced sequential photographs cf animals and t'ie undraped

human form in motion. Muybridge's work resulted in two books, one on

] govome)

animal motion [7], and the other on human locomotion [8]. These books

are considered as classics on the photographic anzlysis of the gaits

s

of animals and human beings.

e

In the twentieth contury, a lot of research has bzen conducted

on various kinematic aspects of locomotion. An excellent chronological

TR
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literature survey of locomotion upto 1949 hasg bLeen given by Schermerhorn 1

{273}.

inematic studies of locomotion have involved such topics, making
podograms (recording of the sequences and duration of weight-bearing on
three points of the bottom of the foot) [28], investigatiéna of the
relationships between length of stride, rate, and speed, and energy
consumption in level walking [29], electrc~basographic method of recor-
ding gait [30], studies of normal and abnormal gait patterns {31], ete.

Very recently, engineers and scientists have begun to apply the
advances in technolcgy such as the development of modern control theory,
and high speed digital computers to the analysis of the kinematics of
legged locomotion systems.

Chow and Jacobsen {32}, have studied human locomotion by methods
of optiﬁal programming and modern control theory. Using the techniques
of optimal control theory, they analyzed biped locomotion as a multi-
point bourdary value problem. They were able to simulate curves of nip,
knee, and ankle movements which agreed well with experimental data.

Hartrum [33], has developed a computer simulation of a kinematic
model of human gait. He has used the technique of classifying gaits by
their major determinants first proposed by Saunders, Inman, and Eberhart
[10], and has produced a computer simulation of a stick figure of a man
whose motion 1s determined by some 80 different kinematic parameters.
Suach simulations are useful in synthezizing gaits tc suit experimental
data. Also, they can be used as a computer aided tool to demonstrzte both

normal and pathclogical gaits to doctors and physical therapists.
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Burnett and Johnso: [34], have studied the development oi gait in
childhood. They used mot 'n pictures of pait patterns and also studied
the possibility of using (« lectrogoniometry as a diagnostic aid in evalua-
ting early abnormalities ::: children.
The research topict: mentioned above should give an indication of

the state-of-the-art of kirematic studies of legged locomotion systems at

the present time.

2.4 Dynamic Models

Many researchers h:ve studied the dynamics of legged locomotion
systems from various angle=. Some of the topicr, of reser.-ch involved
investigations such as: 1) experiments to determine the center of gravity
of the huran body [3,35], !) studies of weight bearing on the foot [36],
3) force~plate method of mcasuring the pressure that the foot exerts
against the ground {37], 4; studies of the work done by and the mechani-
cal efficiency of human musucles during walking [38,39], etec.

Many such research c¢iforts were qualitative in nature., Fischsr
[40], tried to relate data taken by chronophotography to a three axes
coordinate system, and tried to determine the forces lying behind the
accelerations and velocities of the pathways of gait. Using calculus,
he analyzed the moving forces indirectly from pictures by establishing
displacements, velocities, accelerations, and from this, the muscular
efforts involved in walking.

Elftman [41-43], published many articles between 1934 and 1951 on
suc* topics as, the measurement of the external forces in walking, the
work duwsz »y the muscles in walking, experimental studies on the dynamics

of human walking, etc. Using the force-plate in conjunctien

e
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with motion pictures, and podograph impressions, he tried to get &«

total picture of what was happening to the foot during each phase of the
gtance. He also used graphical differcatiation as a means fcr the
determination of the external forces acting on the body from its dis-
placements. Elftman also computed the energy tvansferred and the rate
of work being done by the varicus components of the locomotion system,

In an article published in 1938, Manter [44], discussed the
dynamics of quadruped walking., He recorded the external forces appltied
to the feet of cats as they walked over a special measuring platform,
and determined the components of the acceieration of their center of
gravity in a three axes coordinate system., Master also diszussed his
results with those obtained by grappa.al differentiation, and showed
that his method inveolved fewer approximations.

Gage [11], has discussed the accelerographic analysis of humap
gait, He used strain gage accelerometers mounted on subgeets at the
level ¢f the secord sacral vertebra to measure both linear and angular
aceelerations, 3Studies were cunducted on smputees as well 3s noun—
amputees, and a comparison made between their accelerograms during slow
and - ormal level walking, ramp descent, and stair descent., Gage used
hsarmonic analysis to correlate gait defects with abnormalities in the
indiv.dual's frequency spectrum, -

From the enumevation of the various research activities in the
area of the dynrmic analysis of legged locomotion systerns, one can see
that many orevious stud:es were qualitative in nature., Borzh human and

animal locomotion is th ‘r~sult of complex processes involving many

factors., However, oune can get an idea of the dynamics involved in the
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process of legged locomotion by considering simple models for such
systems, According to Bayliss {45], "A standing animal is like a box
balanced on four walking-sticks, each jointed in the middle; to repre-
sent a man, the box is up-ended and balanced on two such jointed sides".
Recently, research efforts have been direscted towards the devel-
opment of a sound mathematical basis for the dynamics of legged loco-
motion systems [46]., Frank and McGhee {47], have derived the equations
of motion for a four legged locomotion system consisting of a single
rigid body supported by massless legs. This dynamic model was agssumed to
“march” with a constant velocity iﬂ the direction of motion, on level

w

ground,

¥ith the advent «f high speed computers, and the newer techniques

-

of moderrn control theory, legged locomotion systems can now be simulated
so that their system dvnamics can be displayed in real time. The present
rezeagrch uses the techniques of vibraticnal analysis to obtain postursl
control for the quadruped locomotion syatem of Frank and McChee (47].
in addition, such modal analysis is uged to vallidate the non-linear equa-
tione of wotion describing the system by exposing any mistskes in the
derivation,

Ala. , this research effort iz divected toward the determinaticn
of stability criteria for quadruped locorotion systems and a type of
invertsd pendulum aystem, In addition, ivverted pendulum aneiyesis is

used for the stability of both the guadruped and biped systems, snd to

simuiate certajn dynamlcally stable quadruped and biped gaits.
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2.5 Suwamery

This chapter has sketched briefly the developments that have
taken place in the area of analysis of legged locomotion systems, The
generai problem of gimulation of legged locomotion systems has been
outlined in terms of three specific areas, namely, finite state models,
kinematic models, and dynamic models., Sections 2.2 and 2.3 have
presented work -done upto the present time, in the areas of finite state
modeling, aund kinematic system modeling of locomotion systems, Section
2.4 has surveyed the past research efforts in the analysis of the
dynaric sspects of locomotion systems, Ia addition, this section has
related the present r.search effort to the previous work in this area.
This literature survey is by no means an exhauvstiwve enumeration of the

vast smount of literature available in the area of legged locomotion

system studies.
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CHAPTER III

EQUATIONS OF MOTION OF LEGGED LOCOMOTION GY.LTEMS

3.1 Introduction

The objective of this chapter is to describe the dynamics
associated with the motion of legged locomotion systems, In order to
do this, in Section 3.2, the general equations for the translational
and rotational motion of a rigid body are first derived [48]. These
basic equations of motion for a rigid body are chen appliad te an
idealized legged locomction egystem consisting of a body of mass m sup-
ported by four massless legs in Section 3.3 [47]). Finally, the theory
of a general inverted pendulum system ig described in Sectien 3.4,
The equations of motion of such an inverted pendulum system consisting
of a mass pivoted below its ceater of gravity [5G], will have applica-
tions to the type of biped lecomotion system consjidered in tinis
dissertation as well as in the stabilization of scme faster quadruped

gaits such as the trot and the pace.

3.2 General Equaticas of Motion of a Rigid Body

In general, the meotion of a rigid tody can be described by a
translational equation and a rotational equation. Considering the
general motion of a rigid pody, and choosing the center of mass of the
body as the teferance point, if the total external force acting un the
body is independent of rotational metion, and if the external moment is

15




o=t P

16

independent of the motion of the center of mass, then the transliational
and rotational equaticns of motion of the body can be solved separately.
Consider a rigld body with a set of body fixed coordinate axes
along the prinecipal axes of the body having its origin at the center of
mass. The general rotational equations of motion of such a rigid body,

also called the Euler's equations of motion, are given by {[48]

Hx = Ixxmx + (Izz- Iyy)mymz (3-1)

My = Tby (L= L duu, (3-2)

Moo= 1,0, + (Iyy— Ixx)uxwy (3-3)
where

Moo= d e gk (3-4)

2 = mxi + ‘Dyj + mzk (3’5)

M is the external moment acting on the rigid body, u is the
absolute angular velocity of the rigid body, and I, Iyy, and I,, are
the moments of inertla of the body about the x, y, and 2 axes respec~
tively.

The gen«ral translational equations of motion of a rigid body of

mass m are given by [48)

Fy = m({'x + V= vymz) (3-6)

Fy = m(vy + V- vou) 3-7)

F, = m(v, + vy vx”y) (3-8)
where

Eesderiewk (3-9)
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vevi+vw 3 + v k (3-10)

In the above equations, F 1s the total external force acting on
the rigid body, v is the absolute velocity of the center of mass of the
body, bcth being expressed interms of their instantaneous body axis
components,

Equations (3-1) through (3-5), and (3-6) through (3-10) describe
the rotational and translational motion of a rigid body of mass m having
a system body fixed coordinate axes with its crigin at the center of
mass and oriented along the directions of the principal axes of the

rigid body.

3.3 Equations of Motion of a Quadruped Locomotion System
3.3.1 Basic Equations

Tuis section discusses the theory dealing with the equations of
motion for a four legged locomotion system. It is to be noted that the
derivations of equations (3-11) through (3-40), and (3-50) through
\3-60) are from reference [47]., These results are given here for the
sake of completeness because they are used extensively in the lineariza-
tion techniques described in Chapter IV, Also, equation (A-29) of
reference [47] is not correct, and the correct version of this result is
given by equations (3~46) through (3-49). The quadruped locomotion
system considered in this section is assumed to consist of a body of
mass m supported by legs of negligible mass.

The following convention has been assumed for the coordinate
axes. The xg coordinate axis is directed toward the desired direction
of travel, the zg coordinate axie is in the direction of gravitational

acceleration (positive downward), and the yp axis is in the direction
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of the vector cross product

~

Jp = kg x ig (3-11)
The equations cf motlon are defined with respect to a flat, non-
rotating earth, so that iE’ 33, QE are regarded as the unit vectors
defining an earth fixed frame.
The total state of the locomotion system is described by the
twelve element body state vector
%X = (Xg, Yp» Zgs Uy V, W, 0, ¢, ¥, Dy q, T) (3-12)

vhere

Xps Ypr 2 = position of the center . gravity of the
system relative to an inertial frame ig, Jg» kE

U, vV, W = components of the translational velocity of
the center of gravity expressed in body
coordinates

8, 6, ¥ = the body Euler angles

Ps Gy, ¥ = body rotation rates expressed in body coordi-
nates

The body Euler angles are unambiguously defined in the following
manner. A r*tht handed body fixed soordinate system with unit vectors
E, 3, i is estatlished with its origin fixed at the center of gravity
of the model, This body fixed coordinate system 1s defined such that
when the body angles 8, ¢, ¥ are all simultaneously reduced to zero, the
{, 5, and £ axes are parallel to the iE’ SE' QE axes of the earth fixed
frame respectively. The x, y, z coordinates are measured relative to
the body fixed coordinate system i, 5, é (see Figure 1).

Let the rotation from the earth fixed (xg, vg, 2y) system to the
body fixed system (x, y, z) be accomplished by first rotating about the

- -

k, axis (azimuth), then about the rotated jp axis (elevation), and

B B R s
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finally about the i axis (roli). Then, for amny arbitrary point (xa, Yas
za) in the earth fixed system, the correspcnding coordinates in the

body fixed coordinate system arc

rxb Xa T Xg
Yol =T |Ya - Ym (3~13)
% Za " %
where
r i,
cosfcosy sinycosh -3in@

T, = | (cosysinésing~sinycosé) (cosycos¢+sinysingsing) cosbsing

(sinysing+cosysin@cos¢) (sinysinbcus¢-cosysing) cos¢cosé

(3-14)
For the locomotion system under consideration, if f is the vector

of applied forces expressed in body coordinates
T

£= {fxs £y £ (3-15)
and T is the vector of applied torques in the same reference fr&me
T
T = (L, M, N) (3~16)

and if p, q, * are the componeats of body rotation rate measured about
the body fixed x, y, z system cf axes, then, the Euler's equations of

motion for this particular system become

TP = (Iyy' 1,,)qr + 1L (=17
Iyyq = (I~ L,Jrp + M {3-15)
I,,r= (Ixx- Iyy)pq + N (3-19)

If u, v, 7 are *he componemts of body tramslational velocity in
the x, v, z system, then, from equations (3-6) through (3-8), the three

translational equations of motion for the locumotion system are given by

s

| SVl
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my = (fx -~ mgsing) + mvr - muq (3~20)

nv = (f, + mgcose@sing) + mwp - mur (3~21)

™ = (fz ++ mgcosBeosd) + muq - mvp (3-22)

Finally, from equations (3-~17) through (3-22), the followiug
equations of moticn for the locomotion system can be written

4= vr - wq + ft/m ~ gsind (3-23)

v =wp - ur + fy/m + gcosfsing (3-24)

w=u - vp + f,/m + gcosBeosd (3~25)

b= [Ty~ I 0ar + LI/I (3-26)

q=1{(,,-1. ) + Hlllyy (3-27)

ro= [(I-~ Iyy)pq +NJ/1_, (3-28)

The above equations can be integrated once to get the six
components of body velocity, but the determination of position requires
that these velocity components be transformed to the earth fixed system.

Therefore [47]

B
. T
| “E] M

L]
D e
©
p—— |

o|=1,|a (3-30)
¥ r

where the transformatiorn T2 is given by [48)
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0 cosé -ging

T = 1 tan@siné tanfcosé (3=32)

0 secfsin¢g secBcosd

-l

Integration of equations (3-29) and (3-30) gives the desired
position components of the body state vector x.
3.3.2 Leg Lengths and Angles

The values of leg lengths and angles and their derivatives are
necessary for the feedback control of the quadruped locomoticn system,
They are determined as follows.

Let the position in body coordinates of the foot of leg i, 1 = 1,

2, 3, 4 be given by the vectcr (xi, Yis zi)T. and let (xiE, Yip® ziE)T
be the predetermined time-~dependent position of foot i in the earth
fixed system, then
*y 12 B
Y Y BT (3-32)
inj 8 %5

The other end of the leg is connected to the body at the corres-
ponding hip socket, Let the cooridnates of the hip socket for leg i in
the body fixed coordinate system be given by

= b
hy = (8 By
The leg length, and leg hip angles are then obtained by expressing the

, © 1)T (3-33)

vector

a7l bi (3-34)
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g! in a body fixed spherical coordinate system (zi’ai’si)'
The length of leg i, zi, ie given by
ii 2 2 2y
- - - - f 3=15)
!‘i [(xi ai) + (Yic bi) + (zi Ci) ] (J -y
J Angles a, and 81 are defined by
-1 (x;, = a;)
] @, = tan 1 _“1° (3-36)
1 i (z_, - Ci)
—] B, = -sia”l 1 = Py (3-37)
1 )
] i
101
5 ) where a; is the angle which measures the forward swing of leg i about
{, { its hip axis, and 8; is thz angle by which the leg moves out of the
é? : B plane normal to its axis (see Figure 1).
2 | Leg length and leg angie rates are obtained by differentiating
?i . equations (3~35) through (3-37).
; L]
- — L = [& - + ¥y ~b)+z - {3-38
1 [xi(xi ai) )'i(}'i i) zi(zjL ci)l ( )
- xg{zg = ¢g) = 24(xg - ay)
E § (g - a)" + (2 =<
,; i éi - 24(y4 = by) ~ ¥y2q (3-40)
24 2 2
E b0 = ap® + (zg ~ ep’1*

gracumy

k=

The derivatives of foot position ii, y , and ii appearing in the
above equations are obtained by differentiating equation (3~32) as

follows
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§- "1] ar. | *1F 7 *E *in T ¥g
. — . . T . o8 2
£ rCa BT R § L% & (3-42)
b ; - 5 - H
g 2y % 4R T % E T 72 ]
! b «
g‘ Thzrefore
r.o - 1 -
» -
Pt 1P *iE u
: R N q. T ‘
;\1 el RET RN RS W REVY RRFEL A (3-42)
T2 g é. %, A 2 1 w
i 15 % 1iE _E
.’; 1. - L. - . - ol
E - .
%% 3, Since Tl»Ti = [Zj, the identity matrix, and Regs Yyps %qp are
3 constants, therefore, iiE’ §iE’ and éiE are zero,
§. Hence
— - A — -1 p~
gﬂ X Xyp  Xg u
. dTl
[ b hd ‘&E‘“ yiE - YE -1 v (3-43)
Léi ziE ZE Wj
E— -l et -l L
b where dTlldt = the derivative of matrix '1‘l given in equaticn (3-14),
i° For convenience define ma.rix T, as follows
i‘ {‘Tlll T2 Taas
) Tz T (3-44)
| w
LT131 2 Tiss

where '1‘lij is defined by equation (3-14).

Then the derivativz of the transformaticn matrix Tl becomes
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(«681n8c03¢-5T112) (~ésinesin¢+$rll,) —Beoss
QTI . . ® . . . . .
s am - ~ o 1o n

(dcos¢‘l‘lll-¢'flzlo\1t'l‘l3z) (ecosanz-wlzzwrln) (-6sin9ccs¢-¢'l'123)—1

b

(2~45)

Fipally, from equatfons (3-43) and (3-45), the derivatives of

foot positisn ﬁi’ Ty éi are given by

re v [
Xii A
o ‘a B | (3-46)
2 C
P] 19

where

A=[-(ésin5cos¢+&$112)(xiEan)~(ésinﬁsin&—&Tlll)(yiE-yE)-écos&(ztﬁ-zn)-u}

(3-47)
B‘[(éSi“¢T111+;T131°$T122)(*;E“xﬁ3*(591“¢T112+&T132+$T121)<Yla‘yn)'

(észnesin¢-érl33>(ziE-zE)~v} (3-48)
C“[é°°S¢T111‘$T121“;T132)‘xia“xa}*{;:°9¢T112*$T122+$T131)(Yit‘ys)”

(ésin6c0s¢+;T123)(zitwrg}-wl (3~49)

3c3.3. Control Moments and Forces
The fcllowing assumptions are made for the type cf control lawe
consjdered for the locomotion systam:
a) It is assumed that each foot is placed or the ground at a
sequence of pre~computed -~<itiouns dctermined prior to the

start of forward motion. These foot placements are evenly
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spaced along the desirad cirection of travel and separated
bv oaz etride length for anvy 21iven foot.
b} The length of cach leg meacured from its hip joint to its

fcot is aliowed fo vary through knee flexure.

-y

c) Ihe force applied by the lag tus the body along £ line joiring
the {oot and the hip joi~t 48 assumed to be a linear
combination of leg length and lag lenpth ratz. This means

that each knee joint has a rotaticnzl spring and dauper.

d) Lateral leg deflects ~ is assumed to be controlied by a

=

centering spring snd damper.

e} The rearward rctation of each leg is controlled by applyins a

a

LGN

L]

torque at the hip proporticnal to rhe difference between the

actual sngle measured from the body aris of the locomotion

1

system to a iiue passing through the foct and the hip socket

(‘uu!m:\

and the desired angle computed for an ideal constant velocity

gait., Error rate damping is also included in 1+ ' computation

i

of each hip control torgue.

Therefore the simulated locomoction system is controlled by

et

applying forces along 2ach leg and by moments applied at each hip. It

(e

is assumed that the moments are applied abour the vy body axis bty a hip

drive motor and about a lateral deflection giwbal axis by a centering

i

spring and damper.

Considering the body fixed coordinate system, if Tmi is the

is the

R

torque applied to the body by the hip motor of leg i, Tsi
centering spring torque applied to the body, and Ty is the tatzal torque

applied to the tody by lag i, then

poa  pmer g
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Ty Tsi°°s“i

Ei = Ty = Tmi (3-50)
Tz -Ts‘sinui

The forces applied to the consist of the iorce along each leg and
the reaction forces normal to each leg which are produced by the applied
moments. These forces are computed in a coordinate frame attached te
eack leg. Let zi be a coordinate measured along leg i from its hip
socket, If xi is constrained to be parallel to the x-z plane of the

body fixed system, then

[x}] %y = ag
i i i
zi zy - ¢4

L L -

where the transformation T, is given by [48]

cosay 0 -sinay
Ty = singjsina; cosBy sinfjcosay (3-52)

cossisinai -sinsi cosBicosui

1f the reaction force acting oan the foot of leg i is denoted by
quf then in leg coordinates
qu = (£3 , f; , 0) (3-53)
Since the legs are considered to be massless, the components of
ER, can be obtained by noting that all forces and moments acting on any
le; must sum to Zero. Then, motoxr torque balance recuires for each leg

that
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Tmi - fiizicossi (3-54)

and the centering spring torque talance implies that

Ty, © ~fy s (3-55)

Therefore, if £i is the total force applied by ley i o the body

at hip socket i, expressed 1 leg coordinates, then

Tmi/(zicosei)
£ = ~Tg ity (3-58)
f'
%
. .

Finally, the total leg force in body ccordinates is given by
£ o= TiE? = (£, £ , £ )T (3-37)
e S TR ZA
3.3.4 Total Forces and loments Applied to the Body
The total force components needed in equations {3-23) through

{3-25) are obtained by summation over all ieg forces, Therefore

r - —
d r (y'
£ £
x ju1 4
2
- - 3-58)
)
£ y £
2 =1 %4
har - e -

The total momert vector T given by equation (2-16) is composed
of the moments applied by each hip mctor and spring and the momeats due

to forces applied at each socket h;., Therefore

P
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4 4
T= )T, + ) (b x£) (3-59)
T3 W T4 R T
where
i3 i b £, ~ciz, |
y =C1 L
i 2y i Yy
ﬁi = (b'i X il) = ai bi Ci = cifxi-aifzi (3-60)
fxi fyi 2 Laifyi—bifxid‘

The equations derived above [47] are used to determine the body

state vectcr x from its initial value and subsequently applied control

torques and forces.

3.4 Egquations of Motion for an Inverted Pendulum System
A simple biped locomotion system can be considered to be a mass
with tuvo massless legs attached as shown in Figure 2{a)., TFigure 2(b)

shows the model with the torques applied about the hip and ankle joints

in a longitudinal plane.

i
1
!
1
|
1
1
!
]
~

.

A\
P T
/ \

4
L,

Figure 2 A Simple Biped Locomotion System.,

A

(b) (c)
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Figure 2(c) shows a torque applied in a lateral plune to keep the
body from falling when the system 1s being suprorted by one of the lezs.
From these figures, one can see that the stabilization of the biped
system is similar in some respects to the inverted pendulum oroblem.

In analyzing this problem, two methods of approach arc possihle:
1) the application of Newton's laws of motion, and 2) the Lagrangian
formulation [42]. For dynamic systems with certain constraints, the
Lzgrangian formulation provides an easier method for obtaining their
equations of motion. The inverted pendulum system usnder consideration
has a kinematic constraint in that its leg length g is fixed, For
this reason, the equations of motion of chis syster are derived below
by the application of Lagrange's equations,

In analyzing the moticn of a system by the Lagrangiar approach,
the first step is to choose a set of iuderendent coczdinate. 2, wallh
completely characterize the motion of the system without any redu .ans.
The kinetic and potential energiles T and V respectively arc ~hex
computed as functions of the q 's and éi's.

The Lagrangian function L is given by

L= (T~-V) {361}

and the equations of motion of the system are given by the Lagrange's

equations
:i _3_1:_)_ %I: = Qi 1=1,2.3,4,0c0y 1 (3-62}
t 3qi qi

where the Qi's are nonconservative forces applied to the body. These
Qi's are calculated by producing a2 virtual dispiacemesnt of the system

and finding the virtual work done by the forces O; as given by

30
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4
&=} Q,8q, (3-63)
fel *

The Lagrangian aporoach is now applied to the following inverted
peudulum systen. Figure 3 shows on inverted pendulun with a mzas m
supperted by » massless leg of fixed length A. Tihe body has a moment
of “nertia I and its center of gravity is at a distance r abeve the hip
joinz. The lep is supported by a " fixed " foct, that is, the foot is
attached to the ground by a frictionless hinge which permits rotation
of the lag in 2 plane without sry translation {50]. The analysis of the
inverzed pendulim with the mass plvoted at its center of gravity car be

found in referance [31},

hip joint

® fixed foot "

Y

Figure 3 An Inverted Pendulum Systenm,
Angles ¢1 and ¢2 are the twvo independent coordinatec used in the

Legrangian formulation of the equations of motion for this svstem. From
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Figure 3 the total kinetic energy of the system is seen to be
T = HIR‘ +~. 1¢2 (3-64)

and

L = -(2sing; + rsin¢2)§ + (2cos¢y +-rcos¢2)3 (3-65)
where i, 3 are the unit vectors of the coordinate system shown in the
figure above.

From equations (3-64) and (3-65), the expression for the kinetic

1 *2 s o 2¢2 1 .2
T =5 ulefe] + 2erhybycos(s,-0,) + Y851 + 5 14 (3-66)
The potential energy is given by
V = mg(R-3) = mg(Rcos¢, + rcosé,) (3-67)

Therefore the Lagrangian function L is given by

= (T-V) = %m 2 §_+29.r¢1¢2cos(¢1 ¢2)+r ¢2}+ --"%—mg!.z:os(151-1'-);;1'cos¢2
(3-68)
The virtual work done is given by
W = M(G;p2 - 6¢1) (3-69)
and therefore from equations {3-63) and (3-59)
Q=-M (3-70)
Q=4M (3-71)

Solution of the Lagrange's equations (3-62) gives the following

equations of motion in the independent variabtles éland ¢2

oo Ukl e G
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m£2$l+m£r$2cos(¢1-¢2)+m2r$§sin(¢l~¢2)-mg£sin¢l = - M

(I4mr2)$é+m2r$}ccs(¢1-¢2)-m£r$fsin(¢l-¢2)—mgrsin¢2a + M

varisbles by using the following definitions., Let

(3-73) gives the system equations

wvhere

=

3
Xy

DH - FG)
(AD - F?)
146 - )
(aD ~ 72)
m22
mLr
ngL

(1 + mrd)
mgr

Beos(x, = x,)
2
[Esinx, = Bx sin(x; - x,) + M]

. 2
[Cs:.nxl - Bxusin(x1 - x2) - M]

33
(3-72)

(3-73)

The above equations of motion can be rewritter in terms of state

(3-74)
(3~75)
(3~76)

(3-77)

Substitution of the above equations into equations (3~72) ana

(3-78)
(3-79)

(3~80)

(3-81)

(3-82)
(3-83)
(3-84)
(3-85)
(3-86)
(3-87)
(3-88)

(3-89%9)
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Equations (3-78) through {3-81) given above provide a sta%“e
variable representation of the equations of motion of &tz inverted

pendulum system with a " fixed " foot.

3.5 Sumary

In this chapver, using the Newtonlan approach, the equations of
motion of a general quadrupaed locomotion oystem comsisting of a body of
mass m supporied by massless leg: have been derived.

Also, the equations of motion for a type of inverted peandulum
system with a " fixed "' foot hava been obtained. These basic equations
of motion will be used in the rest of the dissertation to simulate pos~
turzl control systems and to derive stable feedback controil laws for
various quadruped gaits as well as for a certair type of biped loco-

motion system,

L e
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CHAPTER IV

PC3TURAL CONTROL SYSTEM MODE ANALYSIS

4,1 Introduction

Fron the results of the last chapter, the ejuations of motion of
legged locomotion systems are seer to be nonlinear in nature., These
equations have been programmed into a digital cowmputer simulation which
produces computer generated displays of the idealized locomotion system
performing various gaits,

Now, it is well known in classical mechanics that conservative
dynamic systems can be studied in terms of small vibrations about an
equilibrium point [48]. The equations of motion of these systems cre
linearized, and any fre~ motion of these systems can then be expressed
as a superposition of " normal " modes of vibration. Each " ncrmal "
mode of vibration is sinusoidal and is characterized by its frequency.
This concept of modes of free motion can be extended to any linear
time~invariant differential system, even if the system is non-conserva
tive [52].

One way to obtain a linearization of a nonlinear diffevential
equation of the form x = f(x), is to rzplace f(x) with a truncated
Taylor series expension abuut an equilibrium point in which only the
linear terms are retained. A theorem can be proved [53], which states
that under certain fairly mild conditions cn f(x), such a Jacobian

35
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linezvizntiog {3

ieids valiid information regarding the scability and

damping of the small disturbance moticn of the noniinear system.

Rather tham proving that the conditions of this theorem are
satisfied, in this dissertation the time domain response of the linear~
ized system equations are compared to a numerical solution of the non-~
linear system differential equations for each vibraticnal mode. It will
be seen in Chapte «hat the results obtained by these two methoils

agree to beiter “han one part in 10° thereby valiidating both the linear-
ization technique and both computer programs.

In line with the above objective, this chapter first deals with a
description of linear sys.em theory emphasizing the mode irnterpretatioa
of the " free motion " of linear time-invariant systeus.

Then, assuming that the quadruped locomotion system is 1n equili~
brium in the posturzl position with its fezet vertically below their res~
pective hip socket positions, the inearized equaiions of motion are
derived using small angle approximations, both by rigorous analysis as
well as by an intuitive approach. It is showe that the rigorous
approach yields a 12 x 12 system marrix which decomposes inte four
smaller matrices, thus giving four vibrational systems for small displa-
cements about the equilibrium position.

Finally, ia Sectisn 4.5 the equations of motion of the inverted
perdulun svstem derived in Chupter III are linearized and the correspon-
ding syszem matrix i1s obtained, These results are needed Lo ~ompute
stabilizing control constants for tne legged locomotion systems .y the
application of ihe Routh-Hurwitz stalility criverion and also to ~btsin

the eigenvalues and eigenventors ol the system matrices in order to
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compute their linear system response.
4,2 Mode Interpretation of the Free Motion of Linear Time-
Tnvariant System
This section outlines.brie?ly the theory of " free motion " of
a general linezar time-invariant system. The results cof this section
willpe used to compute the lincarized system response of the legged
locomotion systems discussed in this dissertation. Coasider a general

linear time-invariant system described by the state equation

x(t) = Ax{t; + bu(t) (4-1)

—

where
A7 n X n constant matrix
b = n x m constant matrix

x(t) = n rowed column vector representing
the state of the system at time t

x(0} = ini . 1 state of the system at t = 0

u(t) = inpr. m vector

Consicdering " free motion "

of the system, the input vector u(t)
is zevo for all time t, a.~- the syctem stute equation reduces to the

form
x(t) = ax(t) (4-2)

Consider the general case in which Ri, i 1.2 3, ... n are the

n. distinct eigenvalues of the matrix A. Azy not.-zero vecicr E& such
that [55]

= % = = see 14"'”
Agi Au <y, W2 1 i=1, n (4-3)




nmq

sy

Rkl

1o
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{s cailed an eigenvector associated with the eigenvalwe i;. Since the
eigenvalues of matrix A are assured to be diatinct, their associated
eigenvecturs are linearly independent, Therefore, the free motion gﬁt)
can be uniquely expressed as a linear combination of these n digiinct
eigenvectors cf motrix A,

n

x(t) = Re ] o ()y, eci<cm (bwb)
i=1

The general form of ai(t) is given by

Ast )
= i -
ai(t) Cie (4=5)

where the C,'s are constants,

Therefore

n

. At
i=1
Az t = 0, equation (4-6) yields
n
x(0) = Fe z Ciﬂi (4=7)
il

The constants C1 can be found by using the reciprocal basis r

defined by the scalar product
Ly Xy 7 Bij (i, 3 =1, ... 0} (4-8)

where 51 = Kronecker delta =1 for 1 = j

3
=0 for i# i
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Taking the scalar product of X with both sides of equation (4-7;

the constant Ci is found to be

c; = <z;, x(0)> (4=9)

Therefore, the " zero input state response " of a linear time~

invariant system can be expressed as

n )\it
x(t) = Re ) <ry, x(0)>e " u, (4~10)
i=1

The scalar product <I;» x(0)> represents the magnitude of the
ith mode of the system due to tne initial corditions. 1If the inizial
conditions are taken along the ith eigenvector, then only the iCh mode
is excited. The scalar products ij, 5&0)> where i ¥ § are identi-
cally zero., Therefore for = linear, time-invariant, unforced system
with distinct eigenvalues the free motion response is given by a linear
weighted sum of the modes ekisgi, where Al is an eigenvalue of the sys-
tem matrix A,

Consider the most general case in which the coefficient matrix
has a complex eigenvalue Rl’ then A, = complex conjugate of kl =\, *

1

is also an eigenvalue. The eigenvectors u, and u, correrpsnding to xl

2
and Az are also complex conjugates such t:l-zatﬂ_t._x_2 :‘51*’
L=t
Ay = (a;+38,) A, = (a;~38))
= wHyy 4= iy oy, Yy real
2r, » ¥z 2r, = r=iry L), ry real

(421

-
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‘Then, from equation (4-8)
' 'y = 1 ty o
Lre > =1 L > =0
<_1_:_{, .\_1_'1'> = 0 <£:1', 3'1'> = ]
(4-12)

The normalization condition for the complex eigenvectors is given

by

<.1_x-i’ .1_1.;> + <£'1" 2'1'> = 1 (4-13)

Using the above results, tue free motiom of a system with k pairs

of complex eigenvalues is given by the expression [55]

k
() = agt
x(t} igle 1 ([<£;,£ﬂ0)>ccasit + r?,EﬁO) sinsi:]u' +

[§£;£§(0)>c0581t - g£;i§ﬁ0)>s1n81t]g; } (4-14)

The amplitude and phase cf each oscillatory mode depends ornly on
the iritial conditioms.,
When the initial conditions are equal to u', that is
x(0) = u' (4-15)

the solution of equation (4-14) gives gives mode 1 as follows
x(t) = 1% [(cosB, t)u} - (sin8, t)u} (4-16)

When the init:ial conditions are equal tec u"', then the solution

gives mode 2 given below

x(t) = 1% [(cos, t)u" + (sing,t)u’] (417

HONZO e bl sy o b b N A N ARG TS SRR Ait
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The equations derived above give the " zero input state response "

:I of a linear time-iuvariant system whose coeff{icient matrix has some

:1 d.stinct complex conjugate eigenvalues and corresponding complex conjugate
eigenvectors,

% In general, the matrix A is real and non-symmetric for the legged

- locomotion systems considered in Chapter III. It has both real and com-

ii plex eigenvalues which are all distinct. Therefore, the theoretical re-

sults given in tais section can be used to obtain the linearized system

respons2 to small motions about an eguilibrium position of these legged

Foumsinac)

locomotion systems. The linearized equations of motion are derived in

the next section, and these results together with the results of this

section are combined to obtain the various independent vibrational modes

of the quadruped locomotion system.

fusiomend

4.3 Small Angie Equations of Motion for the Quadruped Locomotion
System

Yuieite}

4.3.1 Basic Theory

In this section, the equatitns of motion derived in Chapter III

for the four legged lccomotion system are linearized. Using the assump-

[N ]
[F AN

tions of small motion of the system abtout its equilibrium position, all

the equations derived in Chapter III are systematically iinearized by re-

Fumalirs )

placing sines by the respective angles, and the cosines by unity, and

 bulaty

ignoring terms involving products of the state variables. 1In addition,

symmetry considerations are also used to reduce the system equations

[
vy

s 1ehe

that are obtained.
It is shown that the final 12 x 12 matrix c¢f the linearized system

decomposes into four smaller matrices. These four smailer matrices

Bt Bt Bind
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describe the various independent vibrational modes of the linearized

quadruped locomotton system.

The following definitions are used in the rest of this disserta-

tion with reference to the vibrational analysis of the quadruped loco~ ‘

motion system:

1) Modal Matrix - The matrix that describes the various transla-
tional and rotational motions corresponding tv the indepen~
dent vibrational modes of the linearized locomotion syster.
It should be noted that this definition of a modal matrix is

different from that used in linear system analysis, where a

modal matrix corresponds to he matrix whose columns are

the eigenvectors of the system matrix, Therefore for the

linearized quadruped locomotion system in terms of the above

definition there are four modal matrices,

2) X Axis Vibrationazl Modes ~ By definition the x axis vibra- :
tional modes correspond to the translational and rotational
motions of the quadruped locomotion system in the y-z plane,
- 3)

Y Axis Vibrational Modes - By definition the y axis vibra-

tional modes correspond to the translational and rotational

motions of the quadruped postural system in the x-z plane.

4) Z Axis Translational MModes -~ By definition the z axls tran-

slational modes correspond to the decoupled translational

motion aloug the 2z axis of the quadruped posctural system,

5) Z Axis Rotational Mcdes - By definition t 2z axis rota-

o prom  pr

tional modes correspond to the decoupled rotational moticn

s
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about the z axis of the quadruped postural system, This
corresponds to a rotational motion described by the body

Euler angle ¢ in the x-y plane.

The linearized equations of motion arz obtained assuming small
motions about the equilibrium position for the various translational and
rotational components of the system state vector., The approach is one
of step by step linearization of all the equations of Chapter 111 }ead-
ing finally to the linearized equations of motion for the quadruped.

Considering only small motions of the quadruped system about an
equilibrium point, the following assumptions are made:

The Euler angles 8, ¢, and ¢ are small, and hence th: sines of
these angles can be replaced by the respective angles, and taeir co-
sines by unity,

Using symmetry for the hip socket positions, the following

results can be obtained (see Figure 4).

31 = 82 = a
a3 = a“ x =3
by =b, =-b
b =b = b
2 4
¢ =c, = c,=c =c¢
2 4 (4-18)
Also
A 4 4
Z a; = z bi = z aibi = (4-19)
i=1 = i=1 = {al
4 A
§ al=4a’ and J 0f = 4’ (6-20)
1] i=1
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(a) Quadruped Standing with its feet dirasctly
below the corresponding hip joints,

(-a,-b,c) (a,-b,c)

Cefe I__—‘ x

¥y

("8,b,C) 4 (a,b ,C)

(b) Top View of the Postural System,

Figure 4 The Quadruped Postural System.
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The foot pousition of leg i in the earth fixed coordinate system

is given by

= B*‘
g~ ~Ta

= = +
Yig 7Py =T D
Zg ™ 0

(4-
The initial position of the center of gravity of the machine in

earth coordinates is given by

z, = =(g,tcy) = =(g tc)
Eq ° ° (4=22)
Tha position of the center of gravity of the quadruped postural

system in earth coordinates is (xE, yE, 0).

From equations (3-14) and (3-31) upon replacing the sines of the
Euler angles by the angles and cosines by unity, the linearized trans-

formation matrices become

T 1y -8 ]

T,=]-v 1 ¢ (4=23)
- 8 ~¢ 1 o
o 1

T,=] 1 0 8 (4=24)
-~ 0 \ 1 .

Assuming thatAins the change in positiorn of the z coordinate of
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the center cf gravity of the body in the earth ftxed system, equations

Koz ’

dhafeti it b G g
S

(3-29) and {4-23, yield the components of the translational velocity of

the cenceyr >f gravity.

- [u

y = .“‘1 L8 = ; v (4"25)
Az W w
3 R B

From equations (3-38) and (4-24), the Euler angle rates can be

|
Me
4
J
[~

expressed as

Gacy g

. [ 1
. 9 P q
g‘ ¢ | = T2 q = {p (4-26)
- & r r
[ S L
3- vinearizing equations (3-23) through (3-25) gives the components
) of the translational acceleration of the center of gravity of the body.
g- r VT B I -~ Tr "
e fu fx/m -g 0 0 ;)
E“ v] = fml +1 0 & 0]l (4=27)
) w £_/m o o oflv
i I R N JL7.

Finally, the body rotation rater are given by

- " P~ -
P L/IXX

q| = M/Iyy (4-28)

Equations (4-25) through (4-28) can be combined to give the
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12 x 12 linearized systew matrix shown below,

xE 0
Vg 0
. 0
AzE
ﬁ 0
: 0
- 0
. »
9 4]
¢ 0
P 0
p 0
q 0
r 0
L J L

The force components £ s fy, f, and the torque components L, M

[eh]

oy

00000

000
100
0-g0
00¢g

000

0

0

>

G

-
00

© B o©

(o]

L=

o Bim o

o]
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I -
¢C 0 0 £
X
0 0 0 £
y
0 0 ¢ f +mg
Z
0 0 0 L
0 0 0 ||u
0 0 ¢ N
0 6 0
90 ©
0 U 0
.0 0
IXX
0 Tl_.o
vy
0 oL
IZZ
(46~29)

and N are obtained in ter—s uf the 12 state variables,

ihen the 12 x 12

system matrix state matrix relating the fiist derivatives of the state

variables to the state variables is computed,

From equation (3~532) using small angle approximations,

n

1

0

ai

e

1

-Bi

By

1

(4-30)
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From equation (3-58) the total force applied by legy i to the
body at hip socket i expressed in leg coordinates becomes
- -
Ty /%
] - -
ii = Tsi/!.i (4--31)
f'
1
Then the total leg force is given by (see equation (3-57))
e, ] [ (/) + ]
xi mi i ai zi
= 3 = T ' = - - ' ( f=
ii {Yi T3 jé (Tsi/Li) Bifzi (4-32)
f 3
Zi zi
b - e -
Let the component of the force along the z axis be of the form
féi = [Af.'.“1 - (mg/4)] (4-33)
Therefore from equations (4-32), (4-33) and (3-58), the total
force vector components become
] [ 4 -
f L) - T
- izlm“‘i/ o) - (mgay/a)}
1 )
f= ) f =}f,]|= {{-Tg, /2,) + (mgB;/4)} (4-34)
1=11 Y jm1 1
]
£ Af; - mg
= e

Equaticn (4-34) can be written in matrix form in texms of all the
components of the various fcrces and turques as given by equation (4-133)

below,
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G
?” - B 111 ] ]
: 4 £y Tofo'io'foo 0oo0o0ooalt, | FpEPPuoc ||
£, [=lo00o03lx1zlzlo 000 + np Y™
T y siototo To,|F10 00 ORITV| 1 =
= A (£,#] 000000001111 % | |00000000 ]},
: mg)
&N 4 In, a,
¢ L T
3 S) Bl
8 [ T
o ] U Sz 82
[ Tss 83
i qu 8,
{ B
‘ Afg
L
Afy
\a Af?
Af}
I | %
H (4-35)
il
i ; e equiticus giving leg lengths and angles, namely, equations
s {3-33) through £{3-37) are now linearized using the conditions given by
1
i equations (4-18) through {4=23). Thus
r - - - -l
{ x3 rXiE - XE 1 1] -6 a; - x 3
s—i yit=T ‘ YiE =i =¥ 1 éliby - Y (4~30)
i S
z Zip ~ 2 0 -¢ 1 “~Z.
: %) L SLE
i
: il Substituting (zE +4z_; for zp and rearranging terms in (4-36)
: 2
;. - - ﬂ - -y po (‘ -y p -y
gj x5 a, xB z,_a0 & L 1 6
= . +1 0 - - 4-317
éj yi } bl yE ZEQ ai ¢ ( )
zg -zg :J ?F. ~ ay —ti ¢ v
L- - 59 - b - e ot e o

L @R

R A T R TR R e
)

1
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‘ E‘ Assume:
‘ Xy = a; + Ay |
1 T g = by Ay (4-38)
: 2, = -z 4+ Az
[ CTe
Using equations (4-37) and (4-~38) and replacing 2, by '("‘o+c1) =
3 o
3 i: -(2,tc), gives the expression
‘ [ r- — oo - g -y pr — {]
Axi -(2,tc) 0 bi ] % |
: { A)ri = 0 (2,+c) -a; ¢} - yE (4=39)
I‘ Azi a; -bi 0 b AzE
i_ Differentiating equation (4-39) with respect to time resuits in
i the expression
{: ['A,; ] --(z +c) 0 b ] —e- rx ]
i o i E
[ by; | = Y (2gtc)  =a jl ¢ - | y. (4-40)
Az:i ay -0 i 0 ¥ AzE
I: S L 4L J .
: From equatien (3-33), the leg lengths £; are approximately equal
E | to
: ~ Ly = (zi - ci) (4~41) :
‘ -
The iinearized expression for angle a, is cbtained from equations
/n (3=36), (4=3%) and (4-41)
4 i -1 (xgmag)  (xg-ay)  Axg
3 =

ag = Tan = = 1 [«(p +c)b4byu-x_] (4=42)
1 {z5~cy) (z;-c)) 2, 20[ (%o ¥ 5]
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i ; (ool (yi=bg)  (yy-by) by;
¥ 3 = -sin g - B R e m & e(rt
i zi zi 2.0 20( ( o C)‘ + ainl
(4-43)

ek
w;&b‘"

The time derivatives of leg lengths and angles are obtained from

equations (4-41) through (4-43).

L

5 Ly =2y = Az1 (4-44)

i hd - Axi 1 . . e

'§" ¢3 = Tog ‘{; [-(2ytc) 8+ i‘v-xE] (4=65)

. . by 1 . . e

g‘ Bi = T = ';-; [“(Q.O-H:)d) + aid.! + yE] (4=t6)
)

Now the linearized expressions for the components L, ¥, and N of
the total torque vector T are determined as follows.,
Linearizing equation (3-50) by replacing sinui by a, and cosa, by

unity results in the expression fcn:_'l_l:t

L e e .
3" Iy Tsy

< I Ty |7 | Ty (4=47)
§ Tp 0

)

Substituting for fxi’ fyi, and fzi from equation (4~-32) and for

f;. from equation (4-33) in equation (3-60) results in the linearized 1
1 i

expression for Ei given below

i

r -

{1as ;i- (mg/4) ]bi+ci(TSi/ £5) +c5_81[Af;i-(mg/ 2

i)

= {(ciT-i/£°)+ ciui{Af;i-(mg/&)}-ai{Af;i-(mglk)}} (4~48)

2]

-l

e

i )
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Substituting for zi from equation (4-47) and for !d from equa-
tion (%-48) in equation (3-60) for %I : - 1 torque vector I results in
the linearized expressions for the total torque vector components L, “,

and N given below.

-~ o - -
L {[1+(ci/zo)rsi+bi[Af;i-(mgfa)]+ciei{Af;i-(mg/4)]}
4
T = |Mf= 1§=1 {[1+(ci/zo)]Tmi-ai[./sf;i-(mgllo)]+ciai[Af;i-(mg/6.)]}
N i(~l/20)[biTm +aiTs ]-[aiei+biai}[Af; -(mg/4)1}
- . i i i .
(4-49)

4,3.2 Feedback Control Laws

The types of feedback control laws that are used in the control
of the quadruped se leg angles and leg angle rates as a function of
time. A simple linear postural control scheme for use with the quadru-
ped would use the following control laws.,

For vertical control, the vertical force applied by leg i to the
body at hip socket i expressed in leg coordinates is given by

' = - '. -
fzi C"(i‘.i lo) + Cgty (4-50)

where Cz, znd Ci are predetermined constants.

For lateral control the torque Tsi produced by a centering spring

and damper system is of the form

= - + .. + + Cey 4=31
Ty, = Co(8y Bci) CiBy + Oy, + Co¥ (4-51)

where CB, Cé' C , and C§ are predetermined constaats.
y

Longitudinal control requires a control iaw giving the hip motor
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torque Thi required to maintain control of the machine iu the jongi-
tudinal plane. The law used for longitudinal control is given below.

Tmic Cq(ai - aci) + C&ai + C’.(xE (4-52)

where Ca, C&, and Ci are predetermined constants and e, is the desired

hip angle for leg i, whenever leg i is in contact with ground,

4.3,3 Postural System Control L ws
For postural control the quadruped i{s made to stand on all its
feet with the feet vertically below the respective hip joints. This

condition is equivalent to the following initial values

B. =0 (4-53)

Using the conditions of equation (4-53), and substituting fcr
@y &i from equatinns (4-42) and (4-453) in equation (4-52) and using
the results of equations (4-25) and (4-26), the linearized exprecsion

for the longitudinal torque simplifies to

C Cs
a . ar ~
T“1 = {;;[-(£°+C)V+bi¢.xE]+i;{ (zd+c)q+bir-u] + Ciu} (4~5%)

Using the conditions of equaticn (4-53), and substituting for By,
and éi from equations (4-43) and (4-46) in equation (4-51), and simpli-
fying the expression results in the linearized control law for the

lateral torque T‘L given below in equation (4-55).

R AR A

Lo e

PR AR IR




C Ce

T = {2 [-(agtc) ¢ta vty J+ -Bi-(2 +c)pta rbv] + Cy_ + Covl  (4=55)

zo i E &0 i v'E ¥
From equation (4~50) upon simplification, the control law for

the vertical force Af;i reduces to the expression
1 = Ll - - -
Afzi Ct[aiﬁ b ¢ AzE} + Cliaiq bip—w] (4~56)

Equations (4-54) through (4~56) Jescribe the postural system
control laws in terms of the state variabi. " the quadruped system,
4,3.4 Total Forces and Moments Applicd to tiba Body

Zo enmpute the total force components fx’ fy’ fz in terms of
the state variables, substitution of the above expressions fov Tmi,
Tsi’ and Afziinto equation {4~34) and simplification by coliecting

terms and summing over 1 = 1, ,..4, using the symmetry preperties of

equations (4-18) through (4~20) resu.ts in

[T B .ﬁcw 4(,
£y [mg- 5%y + ce- z“iw(mg- ¢ m)e-t.(’wﬂc
o &3 e *o 20 z2
1= fy = [!3— &!C +2°L )IV - 4(8 oC.)v~(mg-QEE){2cwc)¢+4(zo+c)cép
%o 22 ¥ ¥ 8o 2, 22
=4{C Az, + C,w)
£, ] { . 2 ; |

(L 7))

The components of the total torque vector T, namely, L, M, '« are

obtained in terms of the state variables by substituting for Iy Tsi,
1
Af;i s 84y B85, etc, in equation {4-49), Afrer simplifying ard coller~

ting terms the following expression is obtained for the total torque

I — e e s e R e b A B BN




R A S S S N BRI N R ARSI T )

55
vector T.

a—
- oy

L {[fE&Ef4(EQiE)(Ca*ﬂocy)]YE+[-4(igtgl?cs-ébzczfﬁss(lo+c)]¢
L 23 L
+[4(¥o+c) (Ca+20Cs s (Petc) 2+ 4p3C, in}
[4( Z ) (Cy ocy)]v-I‘fCB( r;:c) + 4b=Colo!
o (¢]

o_c.

I={M|= L“_‘E.C*lf(zo-!-c)ca]xE-[A(f;l-c)(C&-loci)]u+[mgc("'o+c)-4a2(‘.g-

3
© 23 Lg Lo
2 o«
4(Lotc)c,lo-4la’c, +(tote) 2cola)
23
22 23
N Umg(a®+b2)-4_(a2Ca+b2C ) 1ymt_ [bZC&+azcé} r}
% 23 25
hy - L’ -t

(4=58)

4,3,5 State Variable Representation of the Small Angle Equations

of Motion of the Quadruped Locomotion System

The theory of linearization of the quadruped equations of
motion develcped above 1is now used to oblain a matrix representation
y’ £
from equation (4-~53}, and the quantities L, M, N from equat’on (4-58),

for this system. Upon substituting the expressions fcr fxf £

in the system state equations given by {4~29) snd collecting terms, the
systen state equations are reduced to a 12 x 12 system matrix relating
the components of thz state vector X tc their respective first deriva-
tives with :espect to time, This 12 x 12 system matrix given below in
equation (4-59) decouples into four smalle: matrices as indicated by

the dotted lines, These four smaller matrices describe the four inde-

pendent vibrational systems ci the quadruped pcstural system.

R e e ]
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= . - = —— ““r -
3 FA:E oflcooooooeoozszE
. l
l. w A Bj0 00000000 O}jw
. ¥ 00;01:000000004,
l‘ r 00!0»'000000001-
:’:E © 0000 100,000 0}}lx
= | {4=59)
i— u 0 00 0|B F G HIO 0 0 0} u :
. |
8 o0 00'ooo01'0000lle
. |
[ q 0 ¢00 T JKLIOOOO|Gq
- y 00000000’0100;;
E | E
" v 0000000 OMNTEPRQ|jv
$ 00000000:000115
_ r 000 0O OO OOfE STUJTDP
2! Lp.] L L'-""—".'.H- .
B where
A== 45 (4~60)
E [ m
L
i. B =~ (4C£/m) {4~61)
eI ¢ = mg(a™b?) _ 4(s?%pe9%Ca) (4-62)
E b Lo Izz 1,,25
s 1 . 2y 12 2., -63
=L D = ~(4/1,,25) [b°C, + a"Cg] (4-63)
% 2.,
g - E= [(8/t) - WC /mes)] - (4-64)
i * - I- 2 o 4-65"
E 3 F= [-(4C,/mt3) + (4Cy/m)] (
%
§_A o~ Y
=
.
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%% G = [(ge/2) = {4(25%e)C /meli) (4-66)
_ B = [- {4 4e)C./melh) (4-67)
% I= {-[4(z°+c)cu/1yyz§1 + Imge/1, 001} (4=6¥)

3 = AL6gHe) (250p=Cy) 1/(T 22y} (4-69)

tEmgc(zo+c)/Iyyzol-[4a2c£/1yy]-{4(zo+c)2ca/(1yyg§)]} (4-70)

{ L = t-[4(egra) e, /(1yy03)] - [4alcy/1,,0) (4=71)
- M = ([g/%0] = [4(CgteoC )/ (me2)]) (4-72)
~ N = 0[4(cé+zoc§)/(mz§)] (4-73)
] P = {[4(kote)C/ (m2)] = (ge/ty)} (4=74)
i Q = [4(tg+e)Cy/ (me3)] (4-75)

R = {[4(25+0) (CoroC ) /(1,201 = [mge/ (1201}

pocay

(4-76)
S = [4(£°+c)(Cé+£°C§)/(Ixx£§)] (4-77)
z 2 2 ,
: T = {lrgeeyte) /(I L,) 1=[4b Cz/(Ixx)]-lé(‘o+cz Cgll  (4-78)
LY Lexto
i . S 2 2 2
1 U T Lot Ce/(20)] + b7cp) (4-79)

]

. From equations (4~59) through (4=79), it is seen that the

linearl<ed equations of motion for the quadriyed locomotion system de-

s

compose into basically four types of vibrational sysiems which are

[T )

independent of each other. The upper left aand 2 x 2 matrix in equa-~
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tion (4~59), describes the vibrational modes of translation along the
2z axis. The other 2 x 2 matrix describes the vibrational system asso-
ciated with rotationa) modes about the z axis. The next mat-ix in equa-

tion (4-59), which 1s a 4 x 4 mutrix represents the vibrational system

associated with the vibrational modes describing trznslational motion
along the x axis aloug with rotaticnal motion described by the Euler i
angle 6 about the y axis. Finally, the lower right hand 4 x 4 matrix in
equation (4-59) represents the vibrational system associated with modes
made up of tramslational motion along the y axis along with rotational

motion described by the Euler angle ¢ about the x axis.

4.4 Intuitive Approach to the X Axis Vibractional Modes

Assume that initially the quadruped is stand® - on 1ts four legs
with its feet directly below the respective hip joint. The system is
then slightly disturbed from this egquilibrium position such that only the
vibrational modes representing translational motion along the x axis with
rotational motion 6 about the y axis is generated. It is intuitively
assumed that such decoupling cf the vibrational modes for the quadruped
postural system exists. This assumption gives rise to the following
conditions:

1) The Euler arzles bec. ze

0 = gmall
$=0 (4-80)
v=9

2) The position of the center of gravity of the body relative

the earth fixed frame bhas coordinates

T et LN B SRS e, 2T
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Xp ™ small
yg = 0 (4~81)
2

E- "%,

where on = intial value of the z coordinate of the genter

of gravity of the body in the earth fixed frzme,

3) The initial position of the center of gravicy of the body in
earth fixed coordinates is
xEo =0
Vg, = Y (4-82)
on 2 =(2qtc)
where 2, = initial length of ail four legs of the quadruped,
and ¢ = z coordinate of all four hip sockets of the body.
4)

The foot position of leg i, i=1,...&, in earth fixed coordi~

nates is

Yig = by (4-83)

5) The leg angles have walues

a; = small

(4-8t)
3, =0

6) Since the quadrsped is zssumed to be excited in the particu-

lar vibrational modes under consideration here, the total moment vector

T defined by 2quation (3-16) becomes
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— T .

3 z= [0, M, 0] £4m85)
g%} 7} The total force vector f (see equation (3-58}}, reduces to
g _ :
= | i
%{% au
’4:: f'( 2 fxi
E 1=1
f=l51= 0 {4-26)
. SRR

since the total z axis component of the total force equals
the negative of the weight of rhe body.

Assuming that sin6 can be replac=d by 6, and cos0 equais wmity,
and substituting equations {4~85) and (4-86) into che equations of
motion derived in Chapter III, namely, equations (3-23) thr&ugh (3n28);
the body tvranslational velocity compoients and the components of body

rotational rate measured about the x, y, z axes become

a= {f /m} - gb (4-87)
ve0 {4-88)
w=0 i {4-89)
p =t (4-90)
q = /1,0 (4-91)
r=20 (4-92)

Using thc assumptions cutlined in equatioms (4-8G) through (4-86)

the equations derived in Chapter III are systematically linearized to

get expressions for f, 2nd M, and thus for & and q in terms of the state

variables.

Simplification of the transformation matrices Ti’ Tz and T3yields

[see equations (3-14), (3-31), and (3-52)]
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] 0 -8
'I.‘1 = |0 1 0 (4-93)
8 0 1
—6 ] 1] i
T = |1 o0 8 (4=94)
2
0 0 1
1 0 -0y
T3 = 10 1 0 (4~93)
3y 0 1
L -
The position of the foot of leg i in body coordinates beccmes
- - — ) [~ , =
%, (xiE-xE) ai—\2°+c)8-xE
=T | (yggvp) | = b 4-96)
Yy 1] ViETe i (4-96
Zi (ziE-zE) aie+(£0+C)
T L . - -
From equation (4-96)
(xi-ai) »{xE + {t,+c)e)
(yi~b1) * 0 (4-97)
z;-ey) fa 8 + 2]
From 2quations (4~87) and (3-35), neglecting the term [-8(2, +ci+
x.g}2 as compared to [2°+a18]2 , the leg lengths and their time deriva-

(4-98)
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ii = &ié (4-99)
From equations (3-36), (4-98), and (4-99) linearizaticn results

in the following expression for leg angle ay

ay = —l[xE+(£°+c)8]/[zo+aiel} (4=100)

Using a Taylor's series exvression of the form

301
x [ 3
a, = | w~— B + i 4196
()5 g |
%o/ =0 \ 36 / xp=0 (4-101)
E 8 =0
om0

on equation (4-100), the leg amgle @; and its time derivative are

given by the expressions

a = - E%IKE+(20+C)G] (4~102)
(o]

Gy = = 5’:1-[i3+(z°+c)é] (4-103)
(o]

Substitutinn of the expressions for aj, &i, x; fzom the above
equations (4-102), (4-103) and (4-96), and x; = —[iE+(£04c)6] in equa-
tion (4-52) for the lateral control torque Tmi results in the lineari-

zed expression

- cc ca * 2 . .
Tﬁi = .__.fxg+(z°+c)9] ;T-[xE+(£o+c)9] + Cox (4-104)

%o o E
From equation (3-56), the votal force applied by lez i to the

body at hip socket i is given by

T
5 =1 Tmi/51 0 féi i (4-305)
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Also

Tog Tmy %, Tmy % Ty

Tt o Ay & — 4-106
24 20 %4 £q (£°+ 819) 2, ( )

The z component of the total force applied by leg i to the body

is assumed to be given by che expression
£, = [Cylegmtq) + by - (mg/4)] (4-1073

The total leg force wector components in body coordinates thern

become (see equations(3-57), (3-53))

4
t

£, iguml/zo)«:ifzi]
£=|f = 0 (4-108)
- &

£ ] £

z 1.}. zi

. J

Simplification of equation (4-108) using equations (4~102),
(4-104), (4-107), and the symmetry condirions of equations (4-18)

through (4-20) rdsults in the linearized equation for f

B B -
] 4c, 4Cg . G-

fx - 5l (2otc) 3H4x 1= =3 (2o+c) B4x_J44 X% dnglx_+(Lo+c) ]

o )
£ =lgl= 0

z

-t |

(4-109)

From equations (3-50;, (3-59), and (3-60) the component M of the
total torque vector T finally reduces to the expressier.
M = {[xg+(2g+c)0] [mgety=4C, (L5+2)] = 4Cs (Lo+e) [Xp+(2,+c) 01+4C, (Lte) xg
22 22 2,

2 L ]
2435 (h 8 + C.6 }
" 197 (4-110)
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From equations (3-25), (3-30), (4-93), and (4-94)

iE -y {4-111)
8 =g (4-112)

Application ¢f the expressions for fx and M from equations
(4-109) and (4-110) :n the equations of motion (4~87) and (4-91) resulte
in the equations exprassing u and & in terms of the state variables,

The translational acceleration along the x axis ia given by the

relationship

u = {(8/2) = (4C /me)Ix + [(4/med) (Cp20-C)lu + [(ge/2o) =
14Cy (,+e) /meZ}o=[4C; (25tc) / (me2) Iq)

(4-113)

The angular acceleraticn of the body about the y axis becomes

equai to

§ = 1(1/1422) Imget =4 (2ore) Colxg + [4(2g+e) /(Tyy22) 112,Ce=Clu
2
+(1/1yyzf,) [mgee (2 +c)~4a?22C,~4C (2 +c) 16 - (4/Iyyz§) [a242C;+
2
(4-114)
From equations (4-111) through (4~114), the linearized system
matrix that describes the x axis vibrational modes for small disturian-

ces of the system from its equilibrium position can be written down.

This matrix is given belos.
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™~ - o - of -
xg 0 1 0 0 Xg
u E F G H u
= (4-115)
8 0 0 0 1 0
q 1 J K L q
L -l o od = J

In equation (4-115), the quantities E, F, G, ... L, are given by
expressions from equations (4=64) through (4~71) respectively.

Equation (4~115) describes the linearized system for small mo-
tions associated with the independent vibrational modes of translation
along the x axis together with rotation 6 about the y axis, that is the

modes associated with motions in the y-z plane, Comparing this modal

matrix derived intuitively cousidering that the x axis modes are decoup-

led from the other vibrational systems, with the results obtained by

~
J rigorous analysis (see equation (4-560)), it is seennthat the two results
{ are identical, Using a similar intuitive a;naoach,‘it is possible to
derive the modal matrices associated with the translational and rotae
tional motions with respect to the y axls as well as the z axis, For
x dynamical systems whose vibrational modes do not deccuple, the lineari-

- zed system matrix should be obtained by rigorous analysis,

§ {,5 Small Angle Equations of Motion for the Inverted Pendulum System

3 The equations of motion for the inverted pendulun system derived

in Section 3.4 are now linearized and a state variable vepresentation
g for the small angle equations of motion for this system is obtained.
i

Consider the following system of state variables

St B e as i
i A T S
i

At
IRy

- 4-116
xl ¢l ¢ 16)

e e
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x =6 (4-117)
2 2
X =3 =x (4~118)
3 .l .l

: = ¢ = 4-119

{ x'-o ¢I?. xZ (4-119)

Substituting these state variabies in the equations of motion of

ooy

the inverted pendulum system given hy equations (3-72) and (3-73)

o—

results in the following system of aquations

mlzi,+m2ri

-~

-’ 2 - - M e -
“ccs(xl x2)+m£rx“sin(xl xz) mgzsinxl M (4-120)

-

2 o M - - -] z - = A -
(Itmr )x“-i-mf.rxscos(x1 xz) mirxssin(xl xz)omgrsinx2 M (4-121)

- Replacing the cosines by unity, and the sines by their angles,
- and ignoring terms containing products of the state variables, the

linearized equations for the inverted pendulum system are obtained.

Vs
g
i

o - m22§c3 + merx, - mgex, = M (4-122)
& (Tor®)x, + mirx, ~ mgrx, = M (4-123)
-

. - In equations (4~122), and (4~123), m = mass of the body, r = dis~
i tance of the pivot below the center of gravity of the hody, £ = constant
=

length of the supporting leg, g = acceleration due to gravity, and M =
. control torque applied to stabilize the system,
- Assume a control torque of the form
: . M = Kz, + Kx, + K% + K, x, (4~124)
ij - Substituting equation (4-124) in equatioms (4-122) asd (4-123),
- and simplifying the resulting expressions, the equations of the
E: .
S linearized system are obtained in terms of the state variables and the
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igﬁ contrel constants Kl through K“..

r- 20 .

73 . + + o] b, + K . » -12

Eﬁg ms X, mlrx“ (K3 mgz)xI + lez K“xg 4 szq 0 (4-125)

:.

¢ 2 [

308 <+ - - - - = -

- mzrx3 (I4nr )x“ stl (K1+mgr)x2 kaa sz“ 0 (4~126)

2]

% The above equations can be further simplified by using the fol-

3 loving substitutions,

1-3 — Let

5 Al = mel (4~127)

: [. b, = (1 +mc?) (4-128)

X A, = mir (4-129)

| A, = (x, - mgt) (4-130)
A = (R, + mgr) (4~131)

Then, cquations (4-125) and {4-126) can be expressed in the form

i— A
(%,

] Ay + Ak, + Ax, +Kix, +Kx, +Kx, =0 (4-132)
] Axg + Ax, = Koxy = Agx, = Kyx, - Kx, = 0 (4~133)

solving these equations simultaneously for i3 and x the iinear-

l.’

ized system state equations become

% D, ’;ﬁw i ow.mw'w.u vkl
1

X, = Xy (4-134)
%y = X, (4=-135)
{ (AZA“+A3L(3) x.l'b(AzKl+A3AS )x2+(A2+A3) Ky x 3+(A2+A3) sz“}
X3 = - (4=136)

- A2
[AIAZ A3]

S e i
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[CA K TALA D %) (A AgtA K )%, +(A, HA) K x o+ (A +A,) K %, ]

X, = (4-137)
4 2
(A4, - A3
Equations (4-134) through (4~137) are the linecarized system state
equations for the inverted pendulum system with 2z " fixed ™ foot, and a
massless leg with the mass pivoted below its center «f gravity.

lquations (4-134) through (4-137) can be put ir the following

matrix €orm

e o - Tar -~
X, 0 0 1 0 }ix
x 9 0 0 1{]x
‘- ’ (4-138)
%, A B C D|ixg
X, E F G HI|Ix,
> b - = d
where
A=~ [(4,4,+AK,) /(A A=A ] (4-139)
B o= - [(AgAgHAK D/ (A Ap=a))] (4-140)
C =~ [(A#AK, /(A A,=52)) (4-141)
D = - [(A ALK,/ (A A=A2)] (4=142)
E = [(A,5,+AK;)/(AA,=A)] (4-143)
P [(AAgHALK)) /(A A-A3)] (4=144)
G = [(A+ADK, /(A A=AD)] (4-145)
H = [(AI+A3)K2/(A1A2—A§)] (4=146)
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L Lo

7 The state vaviable represen ation of the linearized equationis of
motion given above will be used to obtain the linear system response of
the inverted pendulum system for smail motions about its equilibrium
position., This matrix representation is also used for the application
of the Routh-Hurwitz test to determine stabilizing control constants

for this systen,

4,6 Summary

In this chapter, the application of vibrational amalysis to
legged locomotion systems has been described, and the basic equattons
for the linearized systems of these dynamical systems have been deri-
ved.

It is shown that the system equations of the quadruped after
linearization yield a 12 x 12 =rstem matrix which decompcses into four
smaller matrices. These smaller matrices describe the various inde-
pendent vibrational systems of the quadruped postural system ccrrespon-
ding to the translational and votational motions associated with the x,
y, and z axis respectively.

Next, using intuitive assumptions of a dacoupled gystem, the
linearized equations for the vibrational modes assoclated with motions
in the y~-z plane (x axis modes) are derived separately. A comparison
between the approaches, namely, the rigorous analysis, and the intui-
tive approach, shows that their iesulls are identical.

The chapter concludes with the derivation of the linearized
equations of motion for the inverted pendulum system discussed in Sec~

- tion 3.4. These linearized equations will be used in later chapters

for computing the eigenvalues and eigenvectors of -he linear system

e e et AR SR SRR
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and hence obtaining the linear system response for small perturbations.
Then, the nonlinear system is excited along the sane independent vibra-
tional modes, and its response compared with the linearized system
response. It is shown in Chapter VII that these two responnes agree for
small motions to tbe desired degree of accuracy, thereby verifying the

nonlinear quadruped simulation, as well as the linearizgtinn techaiques.
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CHAPTER V

EIGENVALUES AND EIGENVECTORS

5.1 Introduction

This chapter discusses the problem of finding the eigenvalues and
eigenvectors of the real, non-symmetric wmodal matrices obtained for the
linearized locomction systems in Chapter IV, Eigenvalues and their cor-
responding eigenvectors are needed to compute the linear system response.

At the'present time, practical computer programs for determining
the eigenvalues and eigenvectors of general, non-symmetric, real, square
matrices are not many in number, and numerical analysis techniques in
this area are still being improved. The purpose of this chapter is
mainly to outline the applicaiton of some recently published " state-of-~

the~art " computational subroutines in this area on the linearized loco-

motion system matrices, Accordingly, Section 5.2 discusses briefly some

of the methods for solving the complete eigenvalue pioblem for non-
symmetric, recal matrices, Section 5;3 outlines the use of subroutines
NSEVB and EIGENP rfor finding the eigepvalues and eigenvectors of the
linearized system matrices of both the quadruped as well as the inverted

pendulum systems,

5,2 The Complete Eigenproblem for Non-Symmetric, Real Matrices
There are different methods available in the literature for
finding the eigenvalues and eigenvectors of non-symmetric, real

71
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matrices [56-59]. Some of these methods arz discussed briefly in this
section. In these methods, a series of simularity transformations are
performed in order to reduce the non—-symmetric matrix A to either a tri-
diagonal matrix, or a Hessenberg matrix with eigenvalues which are the
came as those of A but more easily computable.

5.2.1 Method of Lanczos [60]

In this method, a simllarity transformation is used to raduce the
non~gymmetric, real matrix into a tridiagens! mstrix. The eigenvalues
and eigenvectors of this tranaformed matrix are then computed,

5.2.2 The LR Transformation [61}

This method can be appiied to an arbitrary watrix, however it is
particularly useful for matrices in the tridiagonal or the Hessenberg
form. This method is based on the successive cecomposition of a sequence
of matrices {Ak? all of which have the same form as the original matrix.
The process of deriving the sequence {Ak? from A oy successive tri-
angular decémpasicions is called the Left-Right (LR) transformation.
This method converges for a large class of matrices including ali
symmetric, positive definite matrices, many matrices with distinct, real
eigenvalues, and many matrices with real eigenvalues which satisfy
neither of these two conditions. This method may not converge for some
matrices with complex eigenvalues, Alsn, triangular decomposition may
not always be numerically stable even for matrices having only real
eigenvalues,

5.2.3 The 7R Transformation [62]
This method is analsgous to the LR transformation but is nore

numerically stable since it mskes use of crthogonal transformations
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rather than triangular decompsition. This method becomes too laboricus
for arbitrary matrices, and 1s used mostly on special natrices such as
the Hessenberg matrix or symmetric-band matrices.,

A good general purpose acheme for solving che complete eigenvalue
problem for non-symmetric, real matrices is to first reduce thz matrix
to the Hessenberz form using the Gaussian elemiration technique, and then
to use the QR transformation on the reduced matrix to calculate the
eigenvalues, The eigenvectors can then be computed by methods such as
the inverse-iteration procedure,

5.3 Determination of the Eigenvalues and Eigenvectors of the
Linearized Locomotion System Matrices

The linearized locomotion system matrices for the quadruped
vibrational modes and the inverted penduium system were derived in
Chapter IV. From the results of Chapter IV, the types of matrices under

consideration are of the following forms:

- - - -
1 0 0O 1 00 0
A B C D 0 01 0

01 0 0 0 1 A B C D

A B,_ -E F G HJ ..E F G H-

where A, B,..., H are all scalars. Therefore, these non-symmetric, real
matrices mav have re 1l as well as complex conjugate eigenvalues and co-
rrespondingly, real and complex conjugate eigenvectors.

After a survey of practical methods for deternining the eigen-
values and eigenvectors for non-symmetric, veal matrices, two " state-

of~the-art " methods that are particularly applicable to the problem
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at hand were found [63,65]. At the present time, the problem of finding
the eigenvalues and eigenvectors of general ron-syrmetric, real matrices
is receiving a lot of atteurion, and in ithe near future wore practical
computer aigorithms should becowme ava.lable,

In the method of Grad and Brebner {63Y], namely subroutine EIGENP,
the following steps are carried out. The matrix is scaled by a sequence
of similarity transformations so thaet the .‘bsclute sums of the corres-
onding rows z2nd columns are roughly equal. Then, the scaled matrix is
normalized so that the square of the Euclidean norm is equal to unity.
This matrix is then reduced to an upper-Hessenberg form by means of
similarity transformations (Householder's method). Then the eigenvalues
are computed by the QR double-step method and the corresponding ecigen-
veetors by inverse iteration,

Subroutine NSEVB [64,65], is another program that can be used for
the numerical solution of the non-symmetric eiyenproblem., In this
subroutine, the real general matrix is first reduced to an alwost upper~
triangular form by stabilized, elementary, similarity transformations.
Then, the QR dcuble-step algorithm is applied to the reduced matrix.

The eigenvectors are then computed by Wielandt's inverse iteration
method. For the case of well separated eigenvalues, rigorous machine
bounds are given for the computed eigensystem using Gerschgorin's
theorem,

The Fortran subroutine EIGENP and a Fortran version of the
original Algol subroutine NSEVB were used on an IBM 360/75 computer to
determine the sigenvalues and eigenvectors of the non-symmetric, real

matrices of the linearized locomotion systems of the type discussed
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75
above, These matrices yielded both real and complex conjugate eigen-
values and eigenvectors which were then used to compute the linear

system response as discussed in Section 4.2,

5.4 Summary

This chapter has briefly outlined the methods available for
solving thes elgenproblem for general, non-symmetric, real matrices. The
computationai algorithms used in this research for the determination of
the eigenvalues and eigenvectors of the linearized locomotion system
matrices, namely subroutines EIGENP and NSEVR have algo been described.

In this chapter, no attempt has been made to present the computa-
tional details of any of these methods. The numerical results obtained
on an IBM 360/75 computer are given in Chapter VII,.

In conclusion, this chapter represents a brief introduction to the
complete eigenvalue problem for real, non-symmetric matrices encountered

in the course of this research,
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CHAPTER VI

STABILITY AND CONTROL OF LEGGED LOCOMOTION SYSTEMS

6,1 Introduction

The problem of stability and control of legged locomotion
systems has been studied from several viewpoints in the past few
vears [16, 47, 51]. ?here are two aspects of the stability problem
for legged locmotion systems, namely, static stability and dynamic
stability [66], TFor some of the slower gaits such as the quadruped
crawl during which the machine is statically stable at all times, a
simple type of finite state control has been successfuliy used to
produce stable locomotion {15]. For higher speed gaits such as the
quadruped trot and the pace which are statically unstable in all
their phases, other means of control need to be uéed to produce
dynamic stability,

This chapter discusses one such type of control, nawely, model
reference control, Then the necessary and sufficient conditions for
the small motion stability of the quadruped and inverted pendulum
systems are derived., Finally, the application of the problem of stabi-~
lity of the inverted pendulum system to produce stable gaits such as
the quadruped pace and a form of the biped walk is discussed. It is
suggested that stability for the biped is obtained by two types of
mechanisms, the body torquing mechanism for controlling attitude and
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lateral position, and the ability to choose the position in which the
feet are placed to maintain stability in the direction of motion [66].
The last section of this chapter discusses the body torquing method of
control for producing a type of stable biped walk with the biped " mar-
ching " at a constant velocity in the direction of motion with z pre-

cetermined fixed stride length. Stability of the biped by moving the

. LYY
[ (e Qe goend A

position of the feet to produce alternating fall and recovery phases is

not covered in this dissertation.

y
1
8

6,2 ‘fodel Reference Control
As explained in the Introduction to this chapter, the dynamic

stability problem for legged locomotion systems becomes difficult for

SR ¥ i <t
—J Lo
Arape

the faster gaits csuch 2s the quadruped walk, trot, and the pace in

P N I L ORI A P TN

it S Ity

comparison with the finite state algorithmic type of control which can
be used for the quadruped crawl, The faster guadruped walk contains

some statically unstable phases, while the trot and pace are statically

unstable at all times. Therefore, for stabilization of the more compli-

cated quadruped gaits, anoctaer type of control called " model reference

- control " is used for the locomotion systems discussed in this disserta-
] tion,
—

control system [67]. In this " closed loop " control scheme, the adap-

Coatew wes v

Figure 5 shows the block diagram of a model reference adaptive

e

tive controller is adjusted to minimize the performance criterion. The

L-"‘—J L—-]

output of the plan= c(t) is compared with the desired output cd(t) of

the reference model and the errcr e(t) = c(t) - cd(t) is minimized by

 tomaay
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the adaptive mechanism so that c(t) approximates cd(t) despite time

Py

variations in the plant parameters., The reference model is assumed to be
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t
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Model

y(t)
Adaption e(t)
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Centroller ’

e

r-r——=——"
ih

Adaptive Control System
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Figure 5 Model Referenced Adaptive Control System.

free from any disturbing influences,

The type of model reference con-

trol scheme used in the simulation for obtaining both postural control

and statrle locomotion gaits for the quadruped system uses a simplified

version of the adaptive control scheme shown in Figure 5. The contro~-

ller used in the simulation computes the control inputs u(t) as linear

functions of the error signal. While more complicated nonlinear control

schemes ouwpht t¢ vield systems with better performance they are not con-

sidered in this dissertation,

For each type of galt an ideal kinematic mndel is assumed., Tor

example, for postural control, the reference model of the quadruped is

assumed to be standing or all its four legs with the feet vertically

below the respecti%e hip sockets. The leg lengths cf the model are all
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equal to 2,, the initial length and the angles a, and £ are all equal
i

¢
to zero. The output of this ideal kinemat : model for the staading
quadrupéd is then compared at sach instant of time with the actual plant
and the controller outputs are regulated to minimize the error betweer
the ..dant and the ideal model of the system. Similarly, for the case
when the quadruved is moving using a particular gait, the ideal kinema-
tic model for that gait is used as a reference model,

In this dissertation the only type of control that has been con-

" marching "

sidered for producing stable locomotion can be described as
type of control., That is, the ideal kinematic model moves with constant
velocity in the direction cf motion, rlacing its feet in the desired
sequence along predetermined points on level ground [47], The actual
parameters of the ideal kinematic models describing the different gaits
and the control constants used for each type of gait are given in
Chapter VII,
6.3 Necessary and Sufiicient Conditions for the Small Motion Stability
of the Quadruped lLocomotion System

one of the methnds that can be used to determine the range of
control comstants to assure small motion stability of the linearized
legged locomotion system is the Routh~Hurwitz critevion [68]. This
test shows the number of right-half plane zeros of the characteristic
equation o g linear syste~, If the characteristic equation of a linear
system conteins contvrol constants whose values can be changed, the
Routh-Hurwitz test gives a set of inmequality constraints on these cont-
rol constants which must be satisfied to obtain a stable system. The

detailed derivation of the Routh-Hurwitz stability criterion and its
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applications can be fournd in the literature [68,69], and will not be
given heire, The method will be used below to compute the control con-
stants which produce small motion stability for the quadruped system as
well as for the inverted pendulum system,

The characteristic equation for the linearized‘quadruped system
can be ob:tained from the 12 x 12 quadruped system matrix given by equa-
tion (4~59). But from the results of equatica (4-59), the 12 x 12
system matrix is seen tc be deccmposed inte four sméller independent
modal matrices. Therefore the Routh test can be applied to each of
these modal matrices separately, and should yield constraints on the
control constants for stability of the system when the gystem is excited
to produce these vibrational modes. Of the four modal matrices, two are
of dimension 2 x 2, and the other two are 4 x 4 matrices.

Cons.der the modal matrix for translaticn along the z axis (see

equation (4-59)).

0 1
[Mll = (6-1)
A B
where
=4Cy
A = T (6"2)
~4C.
B = T (6"'3)

The characteristic equation for this mode becomes

det (M =AI}] =22 -Br-A=0D (6-4)
orx
4C3a 4C
AZ + L., + .____2' = (6"‘5)
m m

e =5 o n i
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The Routh array can be written as

From the above, the Routh-Hurwitz criterion gives the following

inequality constraints on the control constants for stability,

4C

~-A>0 or—-ﬁ-&->0+cz>0 (6-6)
4C£

-B>40 or———->0"C£>O (6-7)
m

The modal matrix for rotation about the z axis is given by

M]= (6-8)

where
4(b2C, + a%Cp)
mga?+v2) ¢ P (6-9)

I_¢ 2
zz 0 12220

C =

- 4(b2Ce + a%C:)
g 8 (6~10)

D=

2
Izzzo

The characteristic equation is given by
A2 -D=-C=0 (6-11)

The Rcuth test gives the inequality conditions
c< 0 (6-12)

D<o (6~-13)

Sincw a, b, & , Izz are all pesitive for the quadr+ved system
o

o e st S T RS :
F
{

[ERPVINIRITE XA U Ny SRR e S O R Y

Ve s

o st
v

m‘?ﬁ% 4, &k "’-"'w, ':,.;‘_";" 3% Sl ent cni S large iy Y Cads g . N
XTI m&m&mm&&mﬁmﬁmxmm&m&sﬁmﬁmﬁm:;mxy.;g_m.mcs-,-va:mwmmmA.mfmkmmmmmzw s, e S

amans

NN Mo

PR AT TR R TP
gk g fodte RESA )

R
S i
fA LA MK Gy

o

| hf:& ‘1‘%&" YRR
A,

EEAEY




>

 muner SURE sosnies S connen SRR sntts SN smnnin{

gy g

T S\ ARSI b o ST & L 2E7 L

82
equations (6-9) and (6-12) yileld the inequality
2 4 p2
[b2cy + a®Cgl > mg(a” + b7 (6-14)
4
which the control constants Co and C8 must satisfy,
The inequality of equation (6-13) along with equacion (6-10)
yield the condition
c.
o, _g (6-15)
Cg b2

whichh control constants C& and Cé must satisfy.

The 4 » 4 modal matrices describing thé translational ané rota-
tional modes assoclated with the x an& y axes fespectively, contain ele~
ments consisting of rather long expressions as can be seen from equa-
tions (4-59), anc (4-64) through (4-79). Therefore the Routh conditions
for these watrices will be derived in terms of the symbolic representa-

tions of these elements.

The modal matrix for the x axis mcdes is

[MB} = (6-16)

I J K L
—~ .

where E, ¥, G, H, I, J, K, L are given equationz {(4-€4) through (4~71)

respectiveiy. The chavacteristic equation for this matrix M3 becomes

AM<(FFLIAS + . -HI=E-K)A2 + (FK-GJ+LE-HI)A + (KE~GI) = 0 (6-17)
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S - This charactevistic equation can be written as
: RA* 4+ 2234+ RA2+RA+R =0 (6-18)
0 1 2 3 4
where the ccefficients RO through Rﬁ are given by
i Ry = 1 (6~19)
-
R, = =(}+L) (6-20)
] R, = (LF-HJ-E=K) (6-21)
3 R3 = {KF4LE-GJ~HI) {6~22)
‘i R, = (XE-GI) {6~23}
L
J The Routh array for this equation becomes
A} !\0 RZ Rl;
P‘ R3
'ﬂ RIRZ.-ROR*:’
‘ Rg = R, Ry
ﬂ RgRy"RyR,
R =
6 Rg
] ’
P T
- H
ij Since R, = 1 > 0, for stability
g} Ri >0, i=1,2,3,2 (6-24)
g} Also
RS >0 (625}
ga
# Rg > O (6-26)

I

- > o e e e CE Iy o)




F e pes P

e g e pey

4]
]

R e =D

U4

The conditions R, > § and R] > 0 yield che inequality

(LP-iJ) > (G3“é§:§§’+KL) (6-27)

From equations (6-26) and (6-27) the follewing condition is
obtained
(FK+LE—GJ~HI)[(LF—HJ)(L%F)~(GJ+HI+ET+FL)I—(F+Lf'(KE’GI) <9 (6-:8)
Substitution of equations (4-65) and (4-7}1) for the quantities F

and L into the coaditiom R; > 0 gives after simplification the exprass-

ion
[c.1 - maZQZCoj < [I_ + m{2 _+2)2} Eé (6~27%)
% vy Bt yy© "V "

wiich C , Cs; and C» should satisfy.
b 3 a L
Simpiification of the condition R2 > 0 by substituting express-

ions for E, F, H, J and K yields the inequality

26 (Comt o) 2 22
4a CE(C& 2°Cx,+CQ[Iyy+m(2°+c) 1 + mica Cz > [Iyyhnc(£°+c)]mg£°
A
(6-30)
The condition Rg > 0, reduces to the ineguality
2 2 2
a“{C CAHC,C ]-a"2 C C -mg{a”t C +(L +c)C,] » O (6~31)
af a?t o % X ° ©° a

Firally from equation (6~24) the inequality conditior th >0
vields

+ Cg[mg(f.o*-c)-l&azczj < n°g?y ¢ (6-32)

2
mga iOC 2ot
4

£

In the above results, if scme of the control conetants are either

Zers of proportional tec =ach other for particular gaits, these equations
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can be simplifird further and should give a more meaningful set of in-
equality constraivts on the control constants frem which the allowable
range for these constants can be determined.

The matrix for the y axis modes is given by

aud -y

4] 1 ] G

M R P Q
iM4} = {(6-33)
0 ¢ 5 1

R S§ T U
P Lo -

where M, N, B, 2, R, S, T, and U are defined by equations (4-72) through

% 4-79).

g The characteristic equation for tnis matrix Hl; is given by
- st +saesaiesaes, =0 (5~36)
L 0 1 2 3 4
i‘.’ g where
. 5, = 1 (h-35)
: S, = ~(MD) (6-36)
§ S, = (NU-QS-T-1) (6-37)
..i Sy = (NI+¥MU-PS-QR) (6~38)
¢ § S, = (MI-PR} (6-39)
; Since S, = 1 » 0, for stability
5 Si >0, 1=1,2,3,4 (6-40}
‘ % Also
S5 > 0 {6-41)
§ SG > 0 {(6-42)
g An expression similar to equation (6-27) is obtained from the

Routh array using equation (6~41) and the condition §; > G.
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(NU-qs) > (RSHQRHOWTL)

() (6-43)

The condjtion 3¢ > 0 and equation (6-43) yield an expression
simflar to equation (6~28) for this particular vibrational system re-

presented by matrix Hh'

{ (ITHA=PS=QR) [ (WU~0S) (N+U) ~ (PSHQRAMWHTU) ] ~ ) 2(MT-PR)} < O
(6-44)

A set of results similar to equations (6-29) through (6-32) can
be derived for the wodal matrix M4 describing the y axis vibrational

modes, Frca the condition Sl> 0 one gets upon simplification the

inequality

[C.I + mb?8_Cp1< [I_+ m(e +c) %] % (6-45)

¥ xx mbLoCh xxt MioTe Ty B

o}
The condition S2 > 0 yields the inequality
4v? c % +c)? b222c + neko
b cz(cB+90b§)+c8{q( oFe) +Ixx]+m 2,C, Ixxzocy > [Ixx+mc(20+c)] A

(6-~46)

Similarly the condition S3 > 0 reduces after simplification to

the condition
2 2 2 o
b{C C.+C.C J4b g _[C C.+C.C ]} = [(2,+c)C.+b“2,C.] 3& > 0  (6-47)
[C Ca¥C eI+ 2olC CotCy R e A A
Finally, S“ > 0 results in the condition

ngzzoc
—_— (6-48)
4

2 2 2
mgb 2°C2+CB[mg(£°+c)-4b 20021-4b zoczcy <

The zbove inequalities are the necessary and sufficient condi-

tions for the small motion stability of the quadruped locomotion system.
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In the next section, algorithms are derived to choose a set of control
constants which produce a stable system and the controllability of the

system is thus proved.

6.4 Controllability o'} the Quadruped Locomotion System

In this section algorithms are develsped for obtaining at least
one solutics to the Routh-Hurwitz inequalities derived in Section 6.3.
The existence of at least one set of stabilizing constants proves the
controllability of the linearized quadruped system,

To simplify the analysis, it is assmmed in the following that all

the control constants are equal to C, This gives the condition

Caac 2 Coe s Ce=C_=Ce=(C. = (C
[+ X

8 2 £

=C,. =C (6-49)
8 V4

y

From this assumptios, the Routh-Hurwitz inequalities for the z
axis translational mode (see equations (6-6) and (6-7)) are satisfied if
¢>0,

Applying equation (6~49) to equations (6-14) and (6~15), the in-

equalities associated with the z axis rotational modes, results in the

conditiocns
c> 28 (6-3G)
4
i b2 > -a® (6-51)

The inequalities of equations (6~29) through (6~32) yield upon

substitution of equation (6-49) the expressions

e oo, AN )
49 s \';"’y“"ll‘.‘i

L, (2,-1) < [m(2+c) 24ma®s2 ] (6-52)

O

mgl

2 2.2 = -
482(1-20)0 +[Ivy+m(2o+c)2+ma g,lc > [vafmc(2°+c)] —3"2' (6-53)

e A s b e

R e
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mg{t {a"~i)-¢]
C > (6-54)
4a”{Z~ig)
2 2 2
mg{a“2 +etc) mg°L.c
€2 - B8 otho™ ., M8 (6-55)
2
4a 16a2

An algorizthm can be developed by choosing C to satisfy equation
(6-50) as well as conditions given by equations (5-~52) through (6-55)
for particular values of a, b, ¢, m, and Loe

For the case when C = 0, a similar set of inequality conditions
czn be derived for the modal matrix associated with translationa and ro-~
tational motion about the y axis. From the above analysis a particular
set ¢I .ontrol constants con be found such that all the inequality con-
ditions of the Routh~Hurwitz test are satis’ :d. This proves the con-
trollability of the quadruped locomotion system for small motions about
its equilibrium position.

A computer program was written to obtain sets of control con-
stants Ca’ Cd’ CB’ Cé, CZ’ Ci’ Ci’ c

y
Hurwitz test for all the modes of vibration of the Quadruped system.

s and C9 that satisfy the Routh-~

6.5 Stability Criteria for the Inverted Pendulum System

The Reuth-Hurwitz stability test is now applied to the linear-
ized equati.ns of motivoa <f the inverted peadulum system derived in
Chapter IV. From equation (4-138), the characteristic equation of this

aystem is given by

A= () A 34 ( CH~DG-F=4) A 2+ (CF~BG+AH-DE) A+(AF-BE) = 0 (6~56)

wvhere the quantities A, B, C, D, E, F, G and H are defined by equations

Lt v ek s — e ems v o e
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(4-139) through (4-146) respectively. Substituting for the quantities A
through H the expressions given in equations (4-139) through (4-146) and
simplifying the resulting expression yields the characteristic equation
for the inverted pendulum system in terms of the contruol constants and

the parameters m, g, %, r, and I as follows

b 3 2 .
. - -87
Rol + le + Rzk + R3A + R“ 0 (6-57)
where
2

Ry = 12 (6-58)

R, = [(I/m)+r2+£r]K“ - K,2(2+4x) (6~39)

R, = [(I/m)+r2+2r}K3 - Ky2(247) - (g£1+mgzr2+mglzr) (6-60)

Ry = g(Ry% = K, 1) (6-61)

R, = g(mglr + K, & K,r) (6-62)

Since R0 = 122 is positive, for the stability of the system
Ri > 0, i = 1’00004 (6-b3)

Also from the first column of the Routh array

(B,Ry= RyR3)

Ry = > 0 (6-64)
Ry
{R_R, - R,R,)
Bgha 1% )
RG = > 0 {6-65)
Rg

From equation (6-63) observing that R should be greater than

zero, equation (6~64) reduces to the condition

(6-66)

- > 0 >
RIRZ ROR3 or R2
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Similarly from equatiouns (6-63) and (6-64) and the condirion
Rg > 0 ths following inerquaiity 1s obtained,
(Rxﬁg - RoRa)R3 - RR > /] (6-67)

1f the inequality constraints given by equaticns (6-63), (6~66)
znd (6=-67) can be satisfied by a set of control constants, then such a
set of constants will produce a stable system. In the next section an
algoritha is given for obtaining these stabilizing coatrol constants for
the inverted pendulum system.
6.6 Algorithm for Obtaining Stabilizing Control Constants for the

Inverted Pendulum System

The Routh-Hurwitz criterion for the inveried pendulun system con-
sidered in this dissertaticn can be written dowrn -in the form of the in-
equality conditions of equations (6-63) through (6-65) given in Sectica
6.5,

An algorithm is now developed for obtaining at least one set of
control constants that satisfy all the sbove comrditione, thereby proving
the controllability of the inverted pendulum system.

From equation (6-63) using the conditions R, > ¢ and R; > e

results in the following

R =[(I/m)+rl+er]K, - (2%rer)K, >0 + R, > s 4 (6-58)
= - +2r)K, > -5
1 mITE TR % Te T T fmyeeiear]l 2
& -
R, = g(K,¢ - Kr) >0 » X < z Ka {6-69)
Therefore the constraints on Ky and K; are

;
?
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where

a = 2(f+r)

b = [(I/m)+t2+2r]

6.6,1 A Particular Sclution

vl

K
2
iz— < -7-:- (6—70)
(6-71)
(6-72)

o derive a particular set of contrel constants that will produce

i %able system, choose
(L Ky = uK2
where

u = .21. [(a/b) + (2/1)]

S =X
(2) Kl 7 K3

The constraintR§> 0 yields
R, =R, - —E:- = (R, ~-n) > 0

where

The coustraint Rs > 0 can be written as

R R, RR,

R3 > -
R, ~(RgR3/R))1] Ry, - n)

(6~73)

(6--74)

(6-75)

(6~76)

6-77)

(6-78)

A particular value of n can be obtained by using equation (6-73)
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in the equation defining n, namely equation (6~77), This particular va-

lue of n, namely np is then given by the expression

2
12 g(2 - )
p o= (6-79)
P (ap -~ b)
Therefore from equation (6-76)
Rp > n (6~80)
From equation (6-78)
RyR, .
¢ o ———— 6-
37 K, - np) (6-81)

Substituting the condition K; = %-xsin the inequality cundition

R, > 0 results in the condition
R, = mg°ri + gfK; - grk, = mg’rk > 0 (6-82)

for any value of K3 . Since Rj, R, Ry and R, are all greater than
zero for the particular values of the control constants chosen above,

from equation (6-31) the only other condition that needs to be satisfied

is

6~83
Ry >y (6~83)

Upon substitution for R, and np from equations (6-6C) and (6-79)

into equation (6-83) and simplifying results in the condition
Ky > [(n?g2b/1) + (mgt?r/b)] (6~84)

where a and b are defined by equations (6-71) and (6~72) respectively,
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Therefore a particular solution that yields a stable inverted

pendulum system can be ehosen by an algorithm as follows:

1) Choose K = ul(z where y = {(a/b) ; (2/x)] .

2) Choese Ka such that it satisfies the inequality of equation
(6-84) .

= L
3) Choose K, 2 K,

These steps should yield a particular set of control constants

Kl’ Kz’ K3’ and Ku which produce a stable system, thus proving the cone

troe.

ability of the inverted pendulum system. :

6.6.,2 General Algorithm for Computing Stabilizing Control Constants

A more gereral algorithm which describes the procedure for ob~

taining stabilizing control constants can be obtained as an extension

of the theory developed so far.

Choose X, = uK2 where p can now kave any value within the limits
set by the constraints of equation ($5-70). Then the conditions Ro > 0,

R, > 0, and R, > 0 are satisfied.

The constraint R. > 0 yields after simplification the condition

2
K, > ((b/a)K, ~ (mgtbje) + LLBE =X | (6-85) :
3 1 a(ap - b)

The condition R“ > G yields in this general case the inequality

ARV SR

K, < [K, (/1) + ngt] (6-86)
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Therefore a general zlgor’thw for finding the centrol constants
that satisfv the Routh-Hurwitz test for the inverted pendilum system

consists of the foliowing steps:
1) Cucose any value of Ky

L 4

2) Choose u such that % <y <-r%'

3) Cheose K = uX_,
4) Substitute this value of u into the inequality (6-85).

5) Choose any values of K, and Kq which satisiy the inequality

constraints (6-85) and (6-86).

This algorithn has been programmed on a digital computer and the
designer can get a set of control constants that satisfy all the condi-
tions of the Routh-Hurwitz test. A listing of this program is given in

the appendix.

6.7 Stabilizing Control Mechanisms

The general form of the control schemes used in the quadruped si-
mulation has been discussed in Chapter IV. In this section the details
of these control laws for the different gaits are discussed.

As pointed out ir Section 6.2, the model reference control system
is used for the control of the quadvuped ¢ lation., The model used for
the various gaits is assumed to be moving witn a constant vaiocity in
the desired direction of travel placing its feet at precdetermined points

along the way. This type of an idealized walking system corresponds to

a " marching " type of locomotion system. The model reference control

—_—
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systam compares tie variovs translational and rotational componecits ~F
thie actual system with the idealized model, and produces correction tor-
Jues and forces.

The type of c¢cutrol laws used for the quadruped simulation have
begen gtated in Chaprer IV and are repeated here,

The torque applied to the body by the hip motor of ileg i is given

by the relatiounsihip

T =Cfla, -0 }*+ c&&, + C.u (6-87)

The lateral contvol torque is derived from a centering spring and

anc damper system zad has the form

rd = 8 - + L .. + C + C, {6-88
s.si Cﬁ(pi Bci) 381 ny CyV A )

Vertical control is obtained by using the control law

f; = G ~C {6=-89)

in which the constant Cg describes the effect duc to gravicy.

Equations (6=87) through (6-8Y9) describe the general type of
contrel laws used in the quadruped simulatiom,

For the following cases, namely, the gquadruped postural system,
the quadruped crawl (which is a slow speed gait with no statically un~
stable phases), and the quadruped walk (which nas some staticallv unsta-
ble phases), the control laws given above were used with the constants
Ces €

v?

-

and C§ all equal to z~+~,
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Tor the quadruped trét, which is a faster gait than either the
crawl o the walk, and which has no statically stable phases, it was
necessary to use the general equations with the lateral torque 'I‘si de-
pendent on both yE and §E in additien to the uswal 8 and 8 terms.

For the quadruped pace, whic» ie a faster gait than the trot,
and in which the quadruped uses its legs on the same side alternately,
it vas necessary to incorporate a different type of control law for
lateral control.

Frcn equacicn (4-124), the control law used for the inverted

pendulum system is of the form

T = K ¢, + K0, + K0, + Kb, (6-90)

As viewed from the y~z plane, the quadruped looks like an inver-
ted peandulum., Therefore a correspondence can be establis: 1 between the
inverted pendulum system and the lateral control mechanism of the qua=-
druped. The coutrol law that i3 ugzed for the lateral control of the
pacing quadruped is of the fomm

1 . .
Tsi =5 [K,¢ + K,p + K (¢+8) + K, (p+B)] (6-91)

where KX' Ky K3, and K, are the control constants computed for the in-
verted pendulum system and ¢, p, 8, g are the paramecers of the quadru-

ped locomotion system.

6.8 Sumary
This chapter hias discussed the type of feedback controi sys-

tems as well as the stability criteria used to produce digital computer
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ey

=

by

 iotat

Ry Gioai e L
v R0 adeiit f o

"

an
Pt

ity 6}#‘:\.&&;
i e

| ot

q ‘ w»v'mn

e R o PR ST e Ao P SR B T Y -

97
sinulations of idealized stable quadruped and biped gaits. For the
quadruped system, the modal matrices derived in Chapter IV were used to
obtain the characteristic equation for each mode after which the Routh-
Burvitz oriterion was applied tc got zets of inequality constraints
amon the control constants., Then the abuve procedure was repeated for
the type of inverted pendulum system considered in this research.

Algorithms were developed for both systems to compute sets of
control constants which satisfied all the constraints of the Routh-Hur-
witz test., Finally, the control mechanisms used for the varicus qua-
druped gaits and the correspondence between the inverted pendulum sys-
tem control iaw and that of the quadruped pace was described.

Chapter VII gives aetalled descriptions of the various quadruped
and biped gaits, the different vibrational modes of the quadruped pos-

tural system, and the inverted pendulum system.




CHAPTER VII

COMPUTER SIMULATION

7.1 Introduction

The objective of th 3 chapter is to present details of the
digital computer simulatinns of the different quadruped and biped
gaits as well as the results of the application of vibrational analysis
on the quadruped locomotion system, Accordingly, Section 7.2 d’scusses
the results of the vibrational analysis techniques used ia verifying
the nonlinear quadruped locomotion system, Section 7.3 outlinss the
details of the kianematic and dyn - ic parameters used to obtain szable
quadruped gaits such as the crawl, the walk, and the trot. The =24~
section describes the results of computer simulation of the inverted
pendulum system along with the application of the Routh-Hurwitz
analysis for obtaining stabilizing control constants., Section 7,5
details the application of inverted pendulum analysis for simulacing a
stable quadruped pace. Finally, Section 7.6 covers the simulation of
a certain type of biped walk. This chapter contains only the results of
the various simulations. The actual computer programs used are listed in

the appendix.

7,2 Vibrational Analysis
This section discusses the results of the verification of the

nonlinear quadruped locomc.ion system simulation by vibratiemal
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analysis. The results of Section 3.3 were ueced in programming a non-
linear digital computer simulation of the ¢uadruped loromotion system
consisting of a mass supported by four massless legs. By using differ-
ent types of reference models for the ideal quadruped locomotion system
in this simulation, both postural control as well as =ztable quadruped
gaits were simulated.

In vibrational znalysis, the quadruped was assumed to stand on all
its four legs, with the feet vertically below their respective hip socket
joints, Figure 6 is a photograph of the computer generated display of
the quadruped postural system, Figures 7 through 9 show the digital
computer displays of the vibrational modes excited in the nonlinear
simulation of the quadruped locomotion system., These figures give a
qualitative idea of the translational and rotational motions produced
about the x, y, and z axes for the quadruped when postural system 1is
excited to produce the various independent vibrational modes, However,

a quantitative idea about the respunse of the quadruped simulation to
these vibrational modes is needed.

From the results of Section 4.3 (equations (4-59) through (4-79)),
the linearized system matrix is seen to decompose into four smaller
nmatrices. These matrices describe the sependent vibrational modes of
the standing quadruped locomotion system. The follrwing procedure is
adopted for the vibrational analysis of this system:

1) Subroutine NSEVB is used to determine the eigenvalues and

corresponding eigenvectors (real or complex) of the real,
nonsymmetric modal matrices of the linearized quadruped

locomotion system.
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Figure 6. Computer Sanerated Display of the Quadruped
. Postural System.
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2) The small motion response of the linearized system for the
various mudes is then computed using subroutine LINEAR. Sub-
routine LINEAR computes the response of ¢he linearized system
for each mode by perturbing the system vesing one-tenth of the
actual values of the components of each of the twelve eigen-
vectors (real or complex) of the linearized quadruped system
computed in step 1 above,

3) The nonlinea~ simulation is then excited along each of the
same twelve eigenvectors using the same values as in step 2
above, and its small motion response recorded.

Tables 1 through 4 list the four modal matrices, theilr computed
eigenvalues with error bounds, and corresponding eigenvectors for one
particular set of contrcl constants, namely, Ca = 9000,0, C& = 200.0,
€g = 9000.G, Cg = 200.0, C, = 1500.0, C; = 100.0, Ci = Cy = C; = 0,0,

Figures 10 and 11 show the transient response of the quadruped
postural system for certain x and y axis modes. igures 12, and 13 des-
cribe the response of system to the translational and rotational motions
of the z axis modes respectively.

Table 5 is a sample of the linear system response when the system
is excited along the first eigenvector of the x axis modal matrix given
in Table 1. Table 6 gives the response of the nonlinear quadruped sys-
tem for the same excitation.

From the transient resvonse of the quadruped postural system to
the different vibrational modes (Figures 10 through 13), as well as from
the sample sets of data given (Tables 5 and 6), it is seen that the non-

lipear and linearized quadruped system responses agree to within
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TABLE 1

Modal Matrix, Eigenvalues, and Eigenvectors

for the X Axis Vibrational Modes

DIMENSIONS OF 00V

Az 2,59 R= 1,00

MOMENTS OF INERTIA

I1XX= 7,0833

(YY¥=242,0333

CONTROUL CONSTANTS

CAs 9093(,0000 NCA=
CLs 1500.0000 NCL=
neyY=

0.0

700.0000 C8= 9000.000v OCB=
100.0000 DCX=

122»48,.3333

0.0

Cx 0.25 LFNGTHs 3,00 M™MASS=20,00

103

200.0000

C¥s 0.0

.

*OY-AXTS TRANSLAYTIOKAL & ROTATIONAL MGGAL MATRIXS®

9.9 1.000000
-1R9,266663 b bbh4444

0.0 0.0
-307.635498

0.9
-66T7.3166%0)

0.0

~5.864691 ~1890.90%273

COMPYTFD F IGENVALUES

NO. REAL PARY
3 ~2.1406259%4
? -?2: 140625956
3 -40.939682007

L ~-40.939682007

INAG. PARY
8.860421671
~B.R60431673%

15.313523293

-1%9.31352329)%

o.o

~14, 644644

1,000000

-R1, 716187

EKROR BOUND
0.000293874
0.000393874
0.002375%314

0.002375914

COMPUTED FIGFNVECTOR NfNi.=

REAL PART
-0.0°5762886
1.000€00000
0.007656877

-0.165058970

TMAG, PARY

-0.106637120

0.0
C.016778924
0.031925749

ERROR ANUND
0.000002869
0.000020368
0,000004073
0,000126384

T e R e
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TABLE 1 Continued

COMPUTED EIGENVECTOR NO.= 2

KEAL PaRY
-0.025762886
1.000000000
0.0076%56872

-0.1650582970

IMAG. PARY
0.'06637120
0.0

-0.016778924

-0.031925749

CONPUTED FIGENVECYTOR

REAL PARY
-0.001992257
0.0516%4%94
-0.021428082

1. 000000000

1MAG. PART
0.00193044%
-0.1103%9192
-0.008015189

J.0

CONPUTED ELIGENVECTOR

REAL PARY
-0.001892267
0.051694594
“0. 07 573082

1.060000000

IMAG. PART
-0.001950445
0,1103359192

0.008015189

0.0

LARGEST RESIDUAL=0.458079818D-01

ERROR BOUND

0.000002369
0,000020%61
0.000004073
0.00012&3R¢4

Nf.= 3

EAROR EKJUND

0.000002378
6.000025% 3
9. 00000610235
0.0000032%3

NO.= &
ERRGR BOUND

0.003002338
6. 060025078
U. 000001025
0.0000032%3
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TABLE 2

Modal Matrix, Eigenvalues, and Eigenvectors
for the Y Axis Vibrational Modas

NDIMENSIUNS OF nuY
Ax 2,50 As 1,00 C= 0,2% LFNGTK: 3,00 ¥ “3020,00
KOMENTS OF INFRTIA

TXYs T.6GR33  TVY¥=&R2,0RYY  1727=4R,31331%

CONTRM, CONSTANTS

CA= SOON.0000 NCAe 00,0000 CH= S000,0000 NCR=  Z00.0000
Ct= 15000000 DCLx . 100,000N NCX= 0.9 Y= 0.0
neys 0.0

SEY-AYTS TRANSLATIONAL € ROTATINNAL “ANAL MATRIXSS

a.n 1 . ONCOO0N 9.0 G.0
~189,76066A3 ~4.444444 667.316650 16 4444644
1 PR 0.0 0.0 1.000000

1R27,718750 40.7846332 -6TA7,140625 -199,019684

rNUPUTED FUGENVALUFS

NO. REAL PARY INAG. PART ERROR BOUND
1} -0, T454R4I T2 3.754101753 0.000511827
2 -0,74%4R41 73 -3, 754101751 0.000611827
3 ~-48.164916992 0.0 6.009812321
& -143. 800232792 0.0 £.010169104

COMPUTED EFIGENVFCTYOR HO.s 1

REAL PARY INAG. PARY ERROR BOUND
-D., 050889463 ~0.256263693 0.000021063

1,000000010 0.0 0.006012148
-0.,01519855% -0.,06900%5013 ¢.000011929%

0,270382166 «0,005614 769 0.0693641%0

R e
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TABLE 2 Continuad

CNMPUTED FIGENVECTOR WO, = 2

REAL PARY
0.7 < ~%AK3
1, 000000000
~3,015198585%

0.,2TN3R2166

COMPYTED

REAL PANTY
0.00G437825
-0.0210882A9
-9,020761297

1. 030000000

COMPUYTED

REAL PARY
0.0004914R%
-0.070679%45
-0(.0069%3701

1. GOAGTHEG0

IMAG, PARY
02567696973
0.8
0.969005013

0, 0086147869

€% GENVECTO®
1MAG, PARY

g.n

0.0

D.0

e

N0.» 3

ERRNZ ANUND
0.0080021063
0.000112168
0.000011929

0.000364130

ERRNR ANUND
0.00003%041%
0,0600023514
0.0002G20A82

0.000107280

FIGENVFCTOR NG.» &

TMAG. PART
0.0

9.0

D

o0

<
.
2

LARGESY RESIDUAL=D, 6964913512001

FRROR ROLMD
0.0500017%2

0.000007797

0. 000107757

106




il et

107

TABLE 3

el

Modzl Matrix, Eigenvalues, and Eigenvectors
for the Z Axis Translatiocnal
Modes of Vibration

s

DIMENSIONS OF ANDY
} Az 72.50 ®=2 1,00 Cs= 0,25 LFNGTHe 3,00 M™MA53=20.00

MOMENTS OF INFQTIR

e

IXX= T7.0R33 (YY242,0833 ([77=4R,3313

}

CONTROL CONSTANTS

[ SAETR SR

~oen

Cas anCl.NNGG NCA=z  200,5000 CB8s I060.,0000 0OC8=  200.0000
iz 15005000 0OCL= 160.0000 DCXs 0.0 Cy= 0.C
Nnrys Oon

tw-‘

*87-AXTS TRANSLATIONAL MANAL MATRIXSC

gy

0.0 )3 0000003

AR

-306.000000C -20,000000

%’ COMPHTED £ JGFNVALUFS
i
T NO. RE AL -RY IRAG, PARY ERROR BOUND
i 1 ~10,004402000 16.162135626 0.000051282
I ? =10, M00NGLN0 ~14.14213%520 G,000051282
L COMPUTED ETGENVFCTOR NO.= 1
ii <EAL PART iMAG. PERT ERROR BOUND
-0.033333331  ~0,04Ti45453 0.00000008S
g} 1.000000800 6.0 0. 635555500
= W COMPUTED FIGENVECTOR WO.* 2
i 3 REAL PARY IKAG. PAFY ERNOR  BAUMD
e ~8.033333331 6.7475404%3 0.200005G38
: i 1.000000000 0.0 0. 530000000

LARGESY JESIDUAL=0.317821239D=-0F
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TABLE 4

Modal Macrix, Eigenvalues, and Eigenvectors
for the Z Axis Rotational
Modes of Vibration

DIMENSIONS NF mODY
Az 2,50 Rz 1,00 Cx 6,25 (FRNGTHe 2,00 #ASS«20.00
MONMTNTS OF INFRTIA

XX 7,0033 1YV=242.0R33 (77=4B,.,3312

CONT2NL CONSTANTS
CA= 2000.0000 ODCA* 200.000C CAx 9000.00%0 ODCR= 200.G000

ft> 1500.0000 NCL= 100.0000 DCX= 0,0 Y= 0.0
neys 0.0

“e~AXTS ROTATIONAL MODAL MATRIX=e¢
9.0 1.0000G0

-567,800049 ~13.333341

COMPUTED EIGENVALUES

NO, REAL Panry IMAG. PARY ERROR BOUND
1 ~6.6666717%3 22.87696832°, 0.C00108706
4 -6 66L-T1753 ~?22.876958384 0.000108706

COMPYTED EEGENVECTOR ND,= 1

REAL PARY IRAG. PARY ERROR AOUKD
-0.01176122S -0.046029051% 0.000000096
t.006000000 0.0 0.000002000

CORPUTED EIGENVECYOR RO,= 2

REAL PaARY IMAG, PART ERROR  BOUND
~3.011761225 0.040290%16 0.00000009s
1.000000000 0.0 G. 000000000

LARGEST RESINUAL®0.2692596160-07

o 2080 P e Mt OB 8 PR T AR MO ORU VR RN A0 B
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Linear System Response of the Quadruped Locomotion
System for a Particular X Axis
Vibrational Mode

DIMENSICNS OF BODY

A= 2,50 #= 1,00 C= G.2%
ROMENTS NF

1XxX= 7,0833 1YY¥=42,0433

LENGTH= 3,00 HASS=20.00

INERTIA

CONTROL CONSTANTS

CA= 9000.,0000 9CA= 200.00C0 CR= 920N,0000 OCH=
Ct= 1500.0000 OCL= 10C.0000 DCx=
0.0

0Cy=

§l1=48,3333

0.9

*ssX-AXTS TRANSLATIINAL & ROTATIONAL MODAL MATRIX®*s

¢.0 i.c000n0
-189,266663 ~4,440444

0.0 0.0
-337.635498

(‘.0
-647.316650

0.0

~6.8€4091 -1890.,905273

COMPUTED EIGENVALUES

NO. REAL PART
1 ~2.140625954
2 -2.1640625954
3 —47.939682CC7

4 -40.9396820C7

IMAG. PART

H.P60431ETH
-2.860431671
15313523293

~15.3135232¢%3

0.0
~14, 460444
1.000000

-81.716187

ERROR BOUND
~1.000000000
-1.000000000
-1.000000000

-1.000000000

COMPUTED LIGENVECTOR NO.= )

REAL PARY
~0.Uc JT64219
0,996399940
0.007656947

-0.165051877

IMAG. PART
-0. 106632531
-0. 000000000

0.016776852

0.031954452

ERROR BGUND
~1.000000000
-1.000000000
~1.0n0000000

~1.000000000
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TABLE 5 Continued

COMPUTEN T IGENVECTOR Nij,= 2

RE AL PART IMAG, PART
~0.02576421Y N.17663249131
0.999969S%450 7, 0I)NC00000
0.0076569%7 =3.,016776452
-0.169051877 ~C. 031954452
COMPUTED EIGENVECTUR

REAL PART IMAG, PART
-0.0C1989994 0,001950331
0.0516431 1701 -C,110332429
-N.021427996 -0.0CRC13131
Ne 999992881 C.000000000
COMPUTED FIGENVECTAR

Rt AL FART IMAG. PART
-0.,00,939994 -0.0C1950331
0.051681701 1,110332242°
-0.021427996 0.008013181
0 999999841 -0,000000070

LARGESY RESIDUAL=0.458CT37190~01

¢ IGENVALUE

ALPHAx -2,140626C CHEGA= 8.8604317

O0.1*COMPUTED E IGENVECTOR NO.=1
REAL PART 144Ge PARY
-o25T6421016-02 -.106632486E-G1
0.999999046E-01 ~.355271241E-15%
0.7 1694305E-03 0.16776M49E-02

ERROR HOUND
-1.N00000000
-1.00000020¢0
~1.,000000000

-1.000000000

NO.= 3
ERROR BUUND
-1.000000000
-1.000000000
-1.000000000

-1.000000000

NO.= 4
ERROR BOUND
-1.000000000
-3 +000000000
-1.000000000
-1.000000000
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J.0

0.10090
0.2000
0.3C00
0.4000
0.500C
0.60C0
0.7000
N.8000
0.9000
t.cooc
1.1000
1.2r00
1.360¢C
le.000
1.5000
1.6000
1.77200
i.9000
1.9000
2.0000
2.100C
2.2000
2.3000
2.40C0
2.5000
2.6N00
2.7000C
2 .8000
2 +900C
3.00C0
3.1000
3.2000
3.3000
3.4000
3.5000C
3.,6000
3.7000
3.,8000
3.9000
4.0000

Q‘ch

4.20CC
4.3000
4.40C0
4.50C9
4.60C0
4,7000
4 .8000
4.9000
$.0000

TABLE 5 Continued

LINEAR SYSTtM RESPINSE

=) ,0(2876621
0,0093%2337
Q. CCT144954
Ve N0380ALA8

=JJLCI6TETY

=D,NN3265067
=0.N02834774
=0.000766429
0.001064826
0.0915869(8
0,2C0926575
=C.INCDRR0DN9
~0.,000693757

-C.u00451108

~0.20021277C
0.300207066
0.7C0350123
0, 000222536

-0.000000869

=0.000145960

-0.0001484R9

-0.,0C00565122
C. OB 03I9065
0. 3CN0TET 24
0.70005289C
. 000004008

~0.2000303717

~0.,0000 33633

~0.000014549
0.000007062
0.N00016694
0.0N0012445
C. 000001829

~C. 000006243

~0,200007568

~-0,000003659
0.0000N1195
0.000003605%
0.,000002¢03
0.000000615

-0.000001264

-0,000001692

~0.000000904
0.G00000180
0.000000772
0. 060000672
0.000000182

~0.000000251

-0.000000376
-0, 000000220
0.000000020

>

X

Ce CHLAINNYCH
C,OH51CHLCRS
~2,03 3030227
-,04¢%R387A
=340 39079494
~N, 009541848
0,015712896
N,.0N2227481L1
0.C12502614
=0.001749458
~0, 009954840
-N,3 9005375
=0.N02721440
0.CN30RG 89S
0.0049290177
nN.N03N19786
~0,0001285%6
-0.,002099423
-0.0020601¢%
~2.7%007355%7
0,000591496
C.0010R3416
0.000720897
0.000C300RL
-0.N00439108
-0,000468023
T0.00013} 769
0. N0N10919¢
0.070236487
0.000170339
0,0N00019824
-23,00009C770
-GC.0NO10%814
-C.0N0048697
N.000019103
0.000051245
n.000039882
0.000007329
-0.000G18508
-0.000023676
-0.000012116
0.009003057
G, 0000110‘9
0.,000009260
0,000002275
~0.0000037}2
-0.000005272
~0,000002966

"0.056665?66'

0,000002349
0,100002133%

Q. 0CT656 G4
-0.000658113
-0.001171093
-, 000757011
~0.000020037

0.000479422

0.000502646

0.000200849
-0.000122483%
~0.000255978
-0.000181580
-0.000018603

0.0N0099345

0.000113575

C.000051237
~0.000021697
-0.000055549
-+ 000042587
-5,000007287

0.000020314

0.000025649%

0.000012795
-0. 000003549
-C.0000i1963
-0.000009904
-0.000002317

0.000004088

0.000005685

0.0000031 41
-0,000000497
-0+ 0000C2555
-0.0000022 85
-3.000000665

0.000000807

0.000001259

0.000000760
-0.000000044
~0.000000541
~0.000000523
~0,0000001 82

0.000000155

0.002000277

0.000000182

0.000000005
~0.000000112
~0.000000119
~0. 000000048

—0.000000029

T 0.,000000061
0.000000043
0.000000004
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-0. 016505182
-C.010425717
C.0001:10147
€. 006907232
0.006981898
0.002628280
-C.001866303
-0.003618805
~C.002479206
-C.000173288
0.001438810
€.001582257
€. 000678088
-0.000338732
-C. 000787850
~0.0005837¢7
-0.000082703
€.00029501 8
0.000356193
C.000170824
-€.000057697
-C.000170250
-C.000136258
- €. 000028189
€.00006001 6
C.06C079660
€.000042235
- €.000008786
-0.00003¢498
-0.0000315%6
-0.C0000842 8
€.000611953
€.000017699
€. 000010284
~C. 000001032
-0.000007757
-C. 00007249
-0,000002347
0.000002228
0000003906
0.000002472
~0. 000000021
<0, 000001632
~0.000001654
~0.002000625
C. 000000440
0. 000000856
0. 000000388

~0.000000340

~C.0000037%




5.1000
5,200C
530090
5.4GC0
§.5%00
5.6000
547000
$.3000
5.906G0
6,.,0000
6.1700
6.2000
6.3000
6.%000
545000
6.6000
6.7000
6 .81C0
6.9900
77,0000
7.1000
7.2000
1.3700
7.4000
7.5900
7.6000
7.7700
7.82C0
7 .9000
33,0020
8.1C00
2,000
- 3060
% .,4000
8 .5000
8 .60"C
8.7000
8 .8000
8 .9000
9.0000
9.1070
$,2000
9.3000
9.4000
9.5000
2.6000
2,7000
9.8000
9.900¢

R I

TABLE 5 Continued

0,900000164
0.n0N00N154
C.20G0000051

-0, 000000049

L, NOI0OCV0RS

~Q,0C0NTN053
0. 000010000
1,000000M35%
0.00000003%
0.0R0000N13

-0.0060000009

-0.100000018

~0,200000013

-0, 760000001
0.100000007
0.90NCI0008
0,300000003

-0.000000002

-0,.NN0002004%

-0.000000003

-3.000C000C0
o€ 0C0NCO0L
3. 700000002
0.100000001

-0.000000000

-0.000600001

-0.900000001

-0.0C0000000
0.0C0000000
9.900000300
2. 000000000

-£.NCN005000

-0.000000000

-0, 200000Q0C)

-0.08000000
0. 700000000
0.900902000
0.000009000

-0.009000900

-0.000000000
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one part in 106 for small motions about the equilibrium point, This
proves the validity of the nonlinear simulation of the quadruped loco-

motion system as well as that of the linearization schenme.

7.3 Simulation of Quadruped Gaits
This section describes the simulations of gquadrupad gaits such as
the crawl, the walk, and the trot. As mentioned in Section 7.2, the non-
linear equations of motion of the quadruped have been pregrammed into a
digital computer simulation which displays the various gaits on a cathode
ray tube dJdisplay system connected to the computer, For producing stable
gaits, the mcdel reference type of approach discussed in Chapter "1 is
used. The ideal kinematic reference model is assumed to walk in a
straight line with constant welocity, placing its feet periodically at
precomputed points a stride length apart along the direction of motlon,
namely tha pesitive x axis.
The kinematic model for each gait is described by the following
parameters:
1) The duty factor - the relative amount of time spent on the
ground by each leg during one locomotion cycle.
2} The relative phase - the amount by which the motion of leg 1,
i =2, 3, &4, lags behind that of leg 1 expressed as a fraction
of the time required to complete one locomotion cycle.
3) The stride length - the constant distance by which the body is
translated in one complete locomotive cvcle of the gait.
4) The period - time required for cne complete locomotive cycle

of the gait.




geE ey

l.mw;

] e e ey o

\ fis R R s E gt
& ; 3 ey AT ; i i A .
;. . " R? i thog q193 n ! 5 g SO L AE N B T IR r s o #A TN e §RTY T AR KAz
. A T R D T T I T N AT T ST I S S T S R R S R N e, . s
o . } e

s R

121

5) The initial foot position for leg i ~ the courdinates
(xi, Yo zi) of the position of the foot of leg 1 at the
reference leg, namely leg 1 first touches the supporting sur-
face in any locomotion cycle., These coordinates are measured
in the body fixed cocrdiﬂate system X,y,z with its crigin at
center of gravity of the locomotion system,

6) The desired z coordinate of the body - the constant height of
the center of gravity of the ideal kinematic model of the
locomotion system above a horizontal plane supporting surface

on which the rezference model walks in a straight line in the

direction of motion with its legs cycling periodically in both

space and time,

The ideal kinematic model for each quadruped gait is specified by
the above parameters,

In the computer simulation, simple linear feedback control laws
based on the difference between the actual and desired values of leg
lengths, angles and their time derivatives, are used ¢o obtain stable
gaits, The simulation of the various guadruped g.its is considered in
greater detail below. For each case, a general descripcion of the zait,
a list of the kinematic and dynamic parameters used, as well as a photo-
graph of the computer display is given, During any phase of the locomo-
tion cycle, legs which are off tha supporting surface ave not displayed.
7.3.1 The Quadruped Crawl

This is z slow speed gait during which the quadruped has alterna-
tely either three or four legs on the ground at 211 times during a loco-

motion cycle. AlX the phases of this gait are statically stable becsuse

R SRR SRS ST T R ey e o
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the center of gravity ~f the body is within the ™ support pattern " [16]

- at al) times. Therzfor: this gait is easily stabilizad. The crawl gait

is thus well sulted for low spsed locomoticgn. .o preferred by natural
quadrspeds as well as animals with more than four legs for low speed
terrestrial locomotion.

Figure 14 i3 a photogreph of the computer simulation display out-
put of the quadruped with all its four legs on the ground at the begin-
uing of its crawl galt cycle, Table 7 lists parameters for the crawl,
7.3.2 The Quadruped Walk

This is a faster gait during which the quadruped employs alter-
nately three and two legs for its support. During the fraction of the
locomotion c¢ycle when there are only twe legs on the supporting surface,
the quadruped is statically umnstable, The parameters used for the
simulation of this gait are listed in Table 8, and a photograph of the
quadruped at the beginning of its locomotion cycle while performing the
walk is shown in Figure 15.

7.3.3 The Quadruped Trot

This is a higher speed gait that quadrupeds employ., While
trotting, the quadruped uses alternately diagonally opposita pairs of
legs to support itself, Therefore, tuls gait is characterized by the
fact that all its phases are statically unsiablz, Dynamic stability of
the quadruped during a trot gait is more difficult because it is nece-
ssary to incorporate feedback terms proportional to the bod tranzie-
tional velocity normal to the nominul directicn of motion. Thus terma
proponrtional to Yg and yg were needed tc stabilize this gait.

Table 9 lists the parametsrs used for the simulation of this

whﬂ@@@&mg‘ e
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The Quadruped Crawl.

Figure 14,

The Quadruped Walk.

Figure 13.
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gait, while Figure 16 shows the computer generated display of the
quadruped simulation performing the trot, From Figure 16, one can see
that the quadruped has legs 1 and 4 on the ground, wnile legs 2 and 3
which are lefted off the supporting surface are not displayed, Also
it is apparent that the trotting quadruped resembles an inverted
pendulum system as far as its diagonally opposite support pattern is
concerned,

In the trot gaits described by Muybridge [ 7], there are phases
during which the animsl 1ifts all its four feet off the grcund in
between the times when ‘t has diagonally opposite legs on the ground.
But in the computer simulation, the quadruped is assuwed to shift its
support from one palr of diagoaally opposite legs to another instanta-
neously, This is indicated by the foot duty cycle which is seen to be

0.5 for all the legs (see Table 7;.

7.4 The Inverted Pendulum System Simulation

The inverted pendulum system described earlier was programmed
into a digital computer simulation. A phctograph of the computer display
of this system is shown im Figure 17, Table 10 gives the values of the
parameters used for the invertad pendulws Iincluding a set ~f stabilizing
control constants which were obtained using the Routh~Hurwitz algorithms
derived for this system in Chapter VI, The inverted pendulum system with
the pivot at the center of gravity of the body, that is, with r = 0 is
easily stabilized. Howcver, the case with r $# 0 is harder to stabilize,
Figure 18 chows the transient response of the inverted peandulum system
consisting of a mass pivoted at a distance r below 1ts center of gravity,

and supported on s massiess leg of constant length 2. A simple linear

SR R O R A R

T | T e A VRV SRR~ 1




R AT

St

!

A et e o

127

('0L0KHd *01P° /0 *@°8 °*L7T° 413 338 0£0°0~ s WANIINI AVIgSIO 4338 At'8 s WANLND sNlac
SLINVLSNNAD tndino

a323‘aee (WY MY 'Y} oaes’e SRLA NGy 08800002 saec'sey ‘ofaes (T A 1R g2ezceaant
[-3] N o " o (3] ¢ ] W 13 ]
SANVLISNGD 0uINOD
asee’ee s Sixv-? $0Q8T°2p » SIXV~A 00098, s SIKVeX «= VILNWIND £0 SIHINOK 23°22 = SSYm

$31443d08d WYILNINT AQOB

S/7ueeendd‘e -m S/useeses’s -m S/uesdene’s -m ovd 0NS08s°'S =0 (vl 200006'8 =0 NVY B00IZI°C =0
S/3uad002°e -w S/74008032°@ aA S/4990698°2 -m 14 00R0S2 R~ =T L4 O60809°8 A L3 ROS20'Q X
SNOTLIQNOD TvisIng

*23s #8'Zx s AONIS 40 GOlydd *23S 8S00°0 = TWAYIIND INIL NOTAYNOILNI
‘14 897 = AQ08 0 ‘0002~ OISO 1935 88’3 = QOlWd ‘14 @@'2 = 301p3S
‘08300 AQ08 NI 1005 40 *0¥003=A 4A (TTTT 13 09808° 1~ sesen‘y [JLELIR
t dIH 4O *0N000-Z (-'DIM et e 000s2's L T4 080522
*Q¥003 A008 NI M dIH 40 °0N00D=A i«'2IN optes‘t (TTLT A sedpe’t ascae‘t-
M diK 40 °*0H00N-X  (=*TIM so0ns 2~ eanng2- s3Uns 2 0009542
NMGS 13S SI 1004 N3IHM - NOILOV 1004 340 3SVHd 1Hd (T 1] eeneg‘e CTT T IT ] ensse‘s
NMO0Q-HON0L LY 1004 40 *0¥003-X YNNYS sanse - snslg ‘'t~ LT[R 00926
31040 AiNQ 4004 vile se0ns'e se0ss's as00s e 00005'¢
NOladIN3S30 INYN ’ £ 2 3
SU3L1INVHYd LNdNT «MIENAN 1004 HOJS INTTIvA

410¥1 03dnuavno

uoTIBTNUIS 3ITEH 3011l padnapend Yl 103 paIs) sidijdueie]

6 d319VL

ST

>
pas

i, Temt

———




128

Figure 16. The Quadruped Trot.

Figure .7. An Inverted Pendulum Systec,
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TABLE 10

parameccers Usad for the Simulation of the
inverted Pepdulum System

g GER

. INVERTED PEMIXILUM SYSTEM

Eothds i LS A e

“aSGS, INERTIANLEG LENGTH,LENGTH Xk, CALCINC. erinT INC, ENDTIME, CRYINC

Aok

5.2 15.3 3.8 1,588 8.218 ¥.1¢008 0.0 -2,838

CONTRO, CONSTANTS
Xl X3
522,072 952,828 10200.0020 15¢6,088
{NITIAL STATE VECTOR

-2,9584 d.0108 g,608% ¢é.3u0e

ABL I3 STAYE VELCTOR TORQUE
X1 X2 x3 xe

3.21 -3,%291351 a,28873¢ 8,183142 -8,228387 220.283184
2.4 2.222671 -2.8642318 2,735538 ~1,83775% 25.182772
2.2 3.279141 -8.144367 2.329%%52 -3.471199 110 .940329
2,32 383602 -, 162427 ~2,263435 a,8780687 74,102831
2.47 2.377439 =0,184p060 -2.,133289 2,183387 28 .754204
2,08 3.2681348 ~2,3131313 ~2,947922 2.368738 19.586188
2,00 2.36665%¢ -3,128619 3.286164 ~3,823876 29.87781%
2.72 2.267260 -8,128853 -2.891182 @.889048 35.19902)
2.82 3.3659&5'-¢.126!!1 ~8.02%139 2.945388 33.99%728
4,97 2,062653 ~9,120382 -~3.,83729% 2.064966 3¢.381621
1.2 3.353513 ~J.113814 -3,038494 8,268916 ?27.783522
1.1 2.25531 ~D.136878 -9.837597 g.e70141 26.223518
1,22 A,351147 -3,299532 ~3,03956¢8 8.873812 24,689487
3,52 2.,347A58 -2,491385 -6.341980 3.878458 22.767114
1.6 2,34277 ~4,083854 ~23.043695 ©,381826 20,60880061
1.52 2.2383553 -2.,275577 -3,044399 9.85835083 18.422810
1.68 =~ %339 -d.267192 -3.844468 2.,884833 16.272688
1,74 d.32947% «2.358794% -2.064183 a.,283825 14.14389¢
1,82 3,325934 -9,4895244% -2,203581 2,/8295¢ 12.22823%6
1,92 3,322772¢ «2.242227 -y,042628 2.,281384 2,.943206
2.3 2.316572 -3.,434155 -2.741332 €,079144 7.912939
2.14 2.212514 -2.226438 -3.3307236 8.876319 5.95515%
2.28° 2.338631 «2,018948 -3,837887 2.072992 4.p82028
2.3? ;o’&"‘. -3 31133. '00.35822 50'69225 20303623
2.462 2.001673 -¥,825115 -2.a33572 @,e0508¢ 8,029017
2.52 -2.991745 2.301174 -2,031169 8,86863¢ -8,932286
Z.8¢ «3,924752 2,337384 -2,228645 3,855937 -2.374421
2,72 -3.82743) 2.212355 ~3,226038 2,351845 -3,692132
2.82 -3.239063 2.217239 -2,.0233%6 3.p4082¢ -4,881752
2,32 -2,812101 2.92155%6 ~0.92965% 9.840917 -5.941876
3.2¢ -3.914091 2,325 -2,017942 3,835788 ~6.865254
3.1¢ -2.815751 9.028714 «3.815255 3,3580686 -7,666783

3.23 -0,8171435 #,831538 -2.8912613 ©,9256%52 -8,3358%7
3,3 -2,818275 2.233848 -d.019038 9,.9287382 -5,877084
3.4 ~2,319154 23,335621 3. 297951 2.515983 -9.298%93
3.52 «2,2197%9 2,3373¢7 -2,885169 2.911362 -9,5982¢3
3.62 -2,828192 ©.3379¢5 -3.30298% 9.087319 -9,787617
5.72 -2,823375 2.3384%9 -2.802708 v, 082981 -9.878833
3.8 -3,32%3%3 3,838554 2,221203 -23,389851 -9,854843
3,92 -2.328180 2.,338278 3,803033 -9,994318 -9,746792.
4,8 +2.219751 &.23760 4,804783 -9,03778¢ -9,5543585
4,13 -3,01023¢ 2,036731 2.0826208 -2,819747 -9,285412
£,2¢ -2,218515 2. 235521 2. 037547 -9,0813393 -8.948825
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3, TABLE 1C Continued
[
g. Iy X1 22 %3 X4 TORUE
4,38 -8,817721 0,834863 @.033738 -p,815722 -9.%50346
4,49 -2,816777 3,233387 ¢,8R9722 -8,81773s =8,128475
PR T -5.815752 3,330%26 2,010562 ~C.2319437 -7.626328
4,53 -2.314872 9,226%18 6.81124% ~6.028832 ~7.97%522
4,73 -3,613513 2.026389 2,%11738 =#.P21%21 ~5,516747
, & 4,43 -2,2842321  3,324133 9,01214% -3.822744 -5.936159
3 . 4,92 -3,911394 2,721832 2.812389 -2.02328% -5,341193
24 , $,a2 -3,2988%57 2,919485 2,212482 -3,023568 ~-4,738370
5 s.18 -3,0436032 2,317124 8,012438 -2.823689 -4,134924
7 5,28 -2,327361 2.214778 0,012322 -9,32342% ~3.533988
33 5.32 -2.286141 2.812446 2.912878 -0.823B34 -2.943342
23 5. .42 -2,924949 2,310173 3.911738 -0, 822455 ~2.387192
< 5,52 <3,303794  3,427963 4.211312 -8,021726 -1.,88984¢
H . 5,82 -3,282659 9.535834 2,019818 ~2,829808 -1,275377
: 5,72 -3.231636 9.233803 ©2.2312742 -B.919776 -8,7664083
9 5.82 -2,083643 9.201882 ©.709619 -8,018633 -6.28763>
) 95,99 2,028285 o.03008¢ ©.50893¢ -B8.£17396 2,16108%
;: 6.03 3,021146 -2,U2159% O,088244 +¢,21.:i884 8.57579%
6,13 2.991934 -2,238313% 2.827511 -2.814714 G,955804
6.22 3,80284 <2,864536 3.888768 ~2.15304 1.2%e313
6,33 2.903286 <2.905795 02.@9%098 -2.911868 1,6886373
~ 6.4 3,8093847 -2,006999 3,885235 -9,84R424 14878463
!‘ 6,52 3.524333 ~2.247088 0.28447¢ ~3.908984 2.10968,
5.862 2,934733 -3.8387%7 2,283729 -8,887562 2.306447
8,72 2.025279 ~0.299393 J.003081 -0.0086170 2.467%12
6,89 3,825344 ~1,299942 9.082296 -0,004620 2.593980
6,92 $.385530 ~8.910359 #.90162F -D. 823552 2.606886
7.32 2.005649 -9,81P048 3.008576 -9,882279 2.747978
7,12 2,205734 ~9.310817 #.020369 -3,08110¢6 2.7788729
7.24 2.225744 -&,017872 -0,0099198 -8,208825 2.781439
7.3¢8 3,2956%3 -2.213820 -9.98g722 9.0M3837 2.757554
7,42 2,92%601 ~2,310671 -3,Pp1283 P.031956 2.799632
7.52 2.305459 -2.212432 -2,991638 2B.68231¢ 2.639547
> ?.02 3.205275 -2,2123112 -4,€Q2027 ©,8083577 2.549633
7,72 3.29%5855 -2.239719 -2.08082368 2.80425% 2,442453
?.83 3.274823 -2,205264 -0,8G2064 #,85484¢4 2.319382
1,92 2.2845348 -7,2368753 -3,082913 ©,085349 2.183%13
3.22 3.204202 -2.258197 -2.083117 8.885785 2.736814
8,19 2.203942 -2.327ARS ~P,7R3277  N.4060898 1.881416
8.22 2.203568 -2,336988 -9.P0339%5 ©,0886349 1719397
3.3 2.333224 -2.928336 -2,003472 2,0086523 1.9%27%
?: 8,42 2,22287% -3,335G78 -3,083532 2.086423 1,383387
8,52 3.302573 -2.225813 -2,003515 @.8066%2 1.213089
6.62 2,332173 +2,3243¢9 -3,203486 0.806622 1.043499
. 8,72 2.221827 -9.243691 ~8,893425 3,846526 2.376108
8.82 3.2014%9 -2,433845 -9,003337 Q,206378 2.712%57
3,32 2.221142 -2.822417 -@.883224 2,%d8184 ¢:553362
¢.22 2.202845 -32,231811 -4,083088 ©,005938 0.483362
e.12 2,222543 -2.98123. -2.082933 2.0233%8 2.255017
» 9,29 2.29825¢ -2,030682 -8.0802762 B,385344 2.118292
9.32 <2.280228 ~2.,349143 -2.0R2576 8,885383 ~-5.9185%%
Q.42 -2.2532% 3,222319 -2,322382 9,324438 -8.,133125%
3.52 -3.00048¢ 2,338754 ~3,022175 B,]04257 ~8.239355
9.6¢ <2,233691 4,24117¢ -2,801965 ©,003842 ~B.3397%6
> 9.8 ~2.822877 2,231536 -2,88175% &,303459 «2,420152
a‘ 9.3¢ -3,801847 9,521862 -2,301536 ©.283052 ~2.5008289
9.93 ~3.88115¢ ©D,222147 -2,881322 2.882045 -2, 58558
12.3¢ -2,82133s 2,3272391 -0.201118 G,8B2243 ~B,633379
¥
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feedbackh control lav 1s used for the stabilization of this system.

7.5 The Quadruped Pace

This is a high speed gait that some animals employ. It is
faster than the trot., During the pace, the animal uses two legs on the
same gide to support itself, This gait has no statically stable phases
in its locomotion cycle. Dynamic stability is achieved by alternate
fall and recovery using the two legs on the same side, Muybridge [7]
has shown that the pacing horse has all its feet off the ground for a
small fraction of the locomotion cycle in between the times the horse
switches its supporting legs.

The pace is more difficult to etabilize tham the trot. Since the
system looks like an inverted pendulum in a direction perpendicular to
the divection of motion, the following correspondence was established
with the inwverted pendulum system Routh-Hurwitz analysis,

Stabilizing control constants were computed using the dynamic
parameters of the quadruped in the Routh-Hurwitz algorithms for the
inverted pendulum system, Then, one half of the values of the control
constaants Kl through K4 computed for the inverted pendulum system were
used in the feedback controel law for the lateral centering torque Tgor
given by equation (6~1i4), Table 11 shows the parameters used for the
simulztion of the quadruped pace. For this particular gait, the
dimensions of the body were 5' x 2' x 2',

Figure 19 shows a photograph of the quadruped pace that was dis-
played by the computer simulation, For display purposes the two legs
that are on the ground have been shown at the center of the center of

the body. Use of the inverted pendulum system Routh~Hurwitz analysis

S S e
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for the lateral control of the quadruped locomotion system produced a

stable pace.

7,6 A Type of Biped Walk

There are basically two types of mechanisms that bipeds employ
for stabilization during walking. One of them is body torquing for
lateral control, and the other is foot placement fur longitudinal
control in the direction of motion. As an example, body torquing is

by tight rope walkers as a stabilization mechanism. They use
long poles to effectively increase their moment of inertia during their
walk on the tight rope. TFoot placement is important for example, for a
stilt walker who maintains stability by alternate fall and recovery by
placing the stilts in the right position.

In this research only the body torquing mechanism has been inves-
tigated in the simulation of a type of biped walk. The idealized biped
moves with a constant velocity in the directfon of m¢.icn over a
horizontal supporting surface.

Table 12 shows a complete set of {nput data used for the biped
walk., Figure 20 is a photograph of the cathode ray tube display of the
biped gait simulated during the course of this research., For this
simulation the following assumption was made. Two parallel massless
legs supporting the body with the distance of the body width separating
them as in the quadruped pace display (see Figure 19), was equivalent to
support by one leg with a foot whose length was equal to the width of
the tody. The result is the display of Figure 20 in which the
supporting leg is shown at the center of the body for convenience and

the leg that is in the air is not shown. Stabilizing control constants
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for the biped walk were once sgain obtained by the application of the
Routh-Hurwitz algorithm for the inverted pendulum system for the

latersl control of this locomotion system using a feedback control law
gimilar to that described in the previous gection for the quadruped

pace,

7.7 Svmmary

This chapter has described rhe experimental results cbtained
from digital computer simulaticns of the idealized locomotion systems
considered in this dissertation.

In Section 7.2 the results of vibrational anslysis on the
quadruped locomotion system were given and the validity of the non-
linear simulation as well as that of the linearization techaniques wmsed
shown by the corresponlence between their outputs to one part in lﬁs.
Then the actual parameters used, and the computer generated displays of
the various quadruped gaits such as the crawl, the walk and the trot
were described, Section 7.4 outlinec the parameters usad to obtain a
ztable inverted pendulum gystem, The application of imverted pendu;um
system stability criteria for the simulation cf a stable quadruped pace
gait was covered in Section 7.5. Finally, the simulation of a type of
biped walk using the body torquing mechanism for stability was discussed

in Section 7,6.
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CHAPTER VIIX

CONCLUSYONS AND FURTHER TOPICS FOR RESEARCH

8.1 Results and Contributions of this Dissertation

The following results and contributions have been made to the

3tudy of legged locomotion systems:

1} The techniques of linecarization and modal analysis have been
applied for the first time to the nonlinear equatious of
motion cf idealized dynaxic models of legged iocomotion
systems, From this, a design tool has been obtained for the
determination of stabilizing control constants for rhe
postural rontlol of these systems, Ia additlon, thuse .echni-
ques have orovided a method for determining the validity of
the nonlinear equations of motion describing the dynamics of
legged locemotion gystems,

2) The use of the above techniques on the nonlinear equations of
motion of the legged locomotion system developed by Framk and
dcGhee [47] has shown that some of their assumptions and
certain equations were incorrect, The appropriate modifica~
tions were made, and for the first time a completely authen-
ticated dynawic simulation of a massless leg quadruped

locomotion system has bean ohtained.
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3) A nonlinzar simulation of an inverted pendulum system with

the mass pivoted below its center of gravity on a massless
leg of conszant length, supported by a " fixed " foot hzs
been developed, This simulation has been used to show that

such a gystem can be stabilized for small motions about its

equilibrium position by torquing the mass using & simple

linear feedback control law.
4) Stability criteria for the controllability of both the

quadruped locomotion system, and the inverted pendulum system

have been established,

&

5) Four dynamically stable gaits, namely, the crawl, the walk,

adboamncalf

the trot, and the pace have beer simulated for the quadruped

locomotion system,

Py

6) A type of biped walk using the body torquing mechanism for
gtability has been simulated, This proves that the

techniques of inverted pendul:wxa stabilization can be applied

[ [ ==

for the lateral stability of a simple biped mcdel consisting

of a mass supported on two massiess legs.

e

8.2 Topics for Further Research
Some of the areas where more work is needed include:
1) Development of the equations of motlon of legged locomotion
systems taking into account leg mass.
2) Stability and control of the simulation of 5 biped model
consisting of & body supported by massleas lags and using bctha

i the body torquing as well as the foot placement mechanisms,
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3) The gystem dynamics incerpcrated in the simulations obtained

g

during the course of this research have asswmed that the

.

models had fixed stride lengths and gait periods, and were

travelling on level ground, This work needs to be extender,

o=

to simulations of leggad locomotion systems producing stable

locomotion over uneven terrain using variable stride lengthe

s |

and gait periods.
4) The application of pole assignment techniques [70] to the

livearized equations of motion of legged locomotion systems

e B

for obtaining desired transient response,

5) Digital computer sinulations of kinematic models of human

ey

gait [33] with applicstions to the study of pathological

gaits {34]. Such simulacions are also useful as a computer

/i

alded instractional tool for demonstrating normal and

pathological gaits to medical personnel,

8.3 Conclusions
In a real life situarion, human and animal loccmotion 18 a complex
process dependent upon many factors such 2s: 1) visual inputs, 2) pro-

pricrece ptive gensing .of muscle dynamics, 3) angular acceleration feedback

e B me B siin I amie

from the vestibular system, etc, Simulations which include all these

different aspects of system dynamics are difficult, if not impossible te
achieve. However, this resexrch has produced ideaiized dynaéic models of
legged locéuotion_systems. These models have simulated * marching * type

of guadruped and biped gaits using a " mopdel reference ™ typa of control
system, The dynamic thsory of legged locomotion systems needs extensive

further development.
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The next step is to extend the work to the simulation of loco-
motion systems which take into such factors as leg mass, the nature cf
the terrain, variabie foot placement, etc, Such systems would probably
need adaptive countrcllers as well as inertial guldance systems for their
stability because the locomotion system would have to change its gait
automatically to take care of variations in the terrain.
1f leg wass is included, the equations of motion ~f a legged
locomotion system become quite complicated. For example, if a biped
is modeled as a rigid body with twc arms, and two legs, with each limb
having a two degree of freedom hip (shoulder) joint, and a single degree
of freedom knee (elbow) joint, then this model has eighteen degrees of
freedom, and is therefore described by a 36th order differential equation.
- The type of biped gait simulated in this research has used only
the bedy torquing mechanism for its stability, A more comprehensive
treatment of biped dynamics should include both the body torquing and the
foot placement (base motion) mechanisms for stability iﬂ.the lateral
as well as the longitudinal directions respectively.
Even though legged locomotion systems are inherently very complex,
this research has shown that it is possible to comstruct a mathematical
basis for their sysvem dynamics by the application c¢f the laws of

mechanics, moderna control theory, and computer simulation,
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APPENDIX

COMPUTER PROGRAMS WITH EXPLANATION

A.l Introduction

This appendix lists the computer pfograms used in the course of
this research alonz with an explanation covering both the variocus
symbols used as well as a description of che prograw. Section A,2 dis-
cusses the main program for the quadruped gaits, Thi:s program is used
to simulate the quadruped crawl, the walk, and the trot gaits. Section
A.3 discusses the modification of the main quadruped progrem for use in
the vibrational analysis of the quadrupex iocomotion system,

Section A.4 covers the computer programs used for obtaining the
linear system response of the quadruped locomotion system. is section
lists the main program for obtaining the eigenvalues and eigenvectors of
the real nopn-synmetric modal matrices of the linearized quadruped locomo-
tion system, as well as the subroutine LINEAR used to compute its linear
system response,

Section A.5 describes the program used for the simulation of the
inverted pendulum system considered in the dissertation. It also inclu-
des a listiang of the algorithm used for computing the stabilizing control
constants using the Routh-Hurwitz analysis,

Finally, Section .6 describes the modifications made to the main
walking program of Secitoa A.2 to simulate the quadruped pace as well as
a type of biped walk,
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A.2 Computer Program of the Quadruped Locomotion Sygtem

LR

This program is used to simulate the follewing quadrupad gaits:

1) the crawl, 2) the walk, and 3) the trot.

The main program listed in

Figure 21 should be used with the Macro subroutiane PIC given by Figure

22 for use on the PDP~Y cemputer of the Digital Equipment Corporation,

For use with any other digital computer, the main program should

be used with the proper display subroutine after making the appropriate

changes in subroutine PICTUR to modify it to suit the particular display

package used,

integration,

This program uses the Euler Predictor-Corrector method of

The following is a partial listjag of the symbols used in this

program:
A(4)
AC(4)
B(4)

BETA(4)

CrPH

ct

CIH
DA(4)
DAC(4)
bB(4)
DL(&)
DLC(4)
DOTX

DT

a the actual forward angle of the leg at the hip

e, the desired forward angle of the leg at the bip

8 the actual lateral angle subtended at the hip by the leg

the foot duty cycle, percentage of the cycle the foot is on

the ground

cosine ¢

fraction of the present pericd which has elapsed
cosine 8

derivative of angle a

time derivative of the desired angle a,
derivative of angle 8

time derivative of the leg length ¢

time derivative of the desired leg length zo
stride/period = desired x-directed velocity

differential tine facrement for integration

T R e Rl e R e R A
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DTP = time between printouts
DX(12) = time derivative of the state vector x
F(3) = force vector f applied to the body
FZP(4) = force in the z direction due to each leg
G(4) = PHI(4) + BETA(4) - 1.0 = instant when foot is lifted in
a cycle. If G is greater tham zero, foot is lifted in next
cycle, If G is less than zerov, then the foot is 1liftad in
this cycle,

GAMMA(4) = position of the foot when it first téuches the ground rela-
tive to the body in stride nommalized coordinates

L B B B

H(3,4) = wmatrix of hip positions

oway

I,J = general indexing variables

M(4) = indicator of the foot position: M = 1 (on ground), M = 0
(off ground)

e

PER = period of the walking cycle

g
L] [

PHI(4) = ¢i.phase of the foot action relative to the first foot action

STH = sin 6

L g

STD = length of the stride

e

T(3) = torque vector T applizd to the body

TIME = total elapsed time of tne gait

]

T™(4) = motor torque applied st the hip (Tﬁ )
i

TMAX = maximun time of the gait

P

TP = next scheduled printing time

TS(4) = lateral torque T, at the hip
1

T1(3,3) = the matrix of transformation T;

Lot B S

T2(3,3) = the matrix of transformation T2

T3T(3,3) = the transposed matrix of transformation T§

X(12} = the body state vector x

- N

XF(4) = the next position of the foot in ground coordinates

Lt ]
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XI(3) =
XK(10) =
XL(4) =
XLC(4) =
XMASS =

Xs(12) =

YF(4) =

ZR =

The following
CA=

CB =
VX,FPY,FPZ =
FX,FY,FZ =
SA =

SB =

TX,TY,TZ =
M, IM,ZM =
The following
CGC =

CI =

NT =

XDNF(4) =

XNF(4)
The following

CPS =

145

1 |7

moment of inertia vector = [I__, I
xx? “yy® “zz

control constants Kl througn KlO
leg lengths 25
magnitude of the leg leneth projected on the x-z plane
mass of the tody

previous value of the state vector x savad for tie
computation of x using the Euler Predictor-Corrector metiizd
of integration

y coordinate of the foot

z coordinate of the body

symbols are used in subroutine FANDM:

cosinz a

cosine B

forces applied to the body by leg i at the hip

total ieg force in body ccordinates

sine a

sine 8

torque applied to the body by the legs

moments due to forces applied at the hip sockets

symbols ave used with subroutine MODEL:

fraction of the present stride which has been executed
fraction of present cycle which has elapsed

number of elapsed periods of gait cycle

next position of the feat in body coordinate system

next position of ti:e feet in rormalized body coordinates

symbols are used with subroutine LEG:

cosine ¢
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FORTRAN 148
’ o

THIS PROGRAM 1S FOR THE SIMULATION OF THE QUADRUPED LOCOMOTION
SYSTEM GAJTS, THIS PROGRAM SHOULD BE USED WITH THE MACRO SUB-
ROUTINE PIC FOR DISPLAY PURPNSES, YWE QUADRUPED GAIYS SIMULATED
BY THIS PROGRAM ARE! THE CRANL, THE WALK AND THE TROT,

THIS PROGRaAM CAN BE USED WITHN THE PROPER DISPLAY SUBROUTINES

ON ANY DIGYTAL COMPUTER,

PSEUDO-DIMENSIONED VARIABLES (E,G,8 Xi{3) 3 X3, X2, ¢ x3)
IBETAL4), DI3)s OXL(3I)o FU(3)s T(3)y T4(3.33, T2(3,3)
2TIT(3,3), XB(3I),» X1(3), XTLS)

LOGICAL LOOP, M(a), WHIAUNG, wCF

DIKENSION A(4), ACLG), B(4), DA(4)» DACI4), DB(4), DL(4),
10LCt4Y, OX112)e FR(4), FYC(4), FR(4), FEP(A), G{4), GANMA(4),
2M1(4), H2(4), NH3IL4), PHIL4), TH(4). T8(4), TXN(4),

SIYLa), TE(a), X(42)s XFPCa)s XK(18), XLC4), X S¢4),
4XM(4), X$€12), YF(4))» YH(Q), ENC(4), EENPUTIOG), EXECUT(68),
STITLECA), IHXCE), IMHY(B), IFXNC4), IFY(H) ,

Co®MON OXi, DX2, DXS,» DX4, OXS3. OX6, OX?7, DX8, OX9, DX18,
1?!11. 12, FX1, FX2, FX3, FR4, FYL, FY2, FY3, FY4, Fi4,
2F22, FR3, F24, 61, 52, G3, G4, TX3. TN2, TXI,» TX4, TV},
31v2, TYS, Y4, T3, 722, T!!o TR4, ANS, XN2,

AXN3, XMé, YHg, YHZ, YNS, YR4, M3, FNZ2, ZM3, BM4

CONMON /INPUT/Z BETAL, BETA2:, BETAZ, BETAG, GAMNMA,

IPNLL, PNI2, PHId, PHI4, M1, K2, W3 YF. $TD, PER., 2R, OT,
2TMAL, X3, X2, XY, X4, X%, X6, X7, X8, X9, X186,

3%X31, X112, XNAS, XI1, X312, X13, XKir XK2, XK3, XK&, XKS,
4aK6, XK7, XKO8, )IK9, OYP, DYD, 7141, 7132, 7133, 7421, 122,
57123, 75331, Y132, 7133, CGs» XF» M, 1ADR, WOF.

OTITLEL: TITLE2, TITLEY,TITLE4,XK1H

COMHON 7018P/ THX1, IWHX2, IHX3, IMX4, 3HYL., INY2, IHY3,
LIHYE , INYS, THYO THYT, INYS

COUlV‘¥%"CE CIMXCL) o INXL), CIMY(1)oIHYL)

EOUIVALENCE (OX(12,0X8), (Fx(l)o'l¥)o
1FYL1),FY8), (FE2CL),FEL), (GC1),G1),
PNELLTopHEL) e (TXCL)TXL) 0 (TF(L)oTYLYY
SCIZCLD,T#L), (XCL), ML), (XKC1D:XKLD, (XM(L), XML}, C(YM(L1),YM3),
Aeami1) 2nd), (EXECUT(1).BETAL), ITITLE(L),TITLEL)

OAVA WIIADHG/ FALSE +7 +SLANKS/5H /7 /X0ONE73 . B/

see FIRSY KALF CF MAIN PROGRAM eoe

IADR © TADDR(YITLE(L))
IF (HEADNG) GO TO 210
HEADHG = ,TRUE.
WRITE(4,600)

CaLl ACCEPY (4, %)

IF () 179,248,122

D0 1N L = 1, K

CALL ACCEPT (4, 1. DEN)
IF (1) 158, 159, 136

IF (1 « 6%) 149, 160, 150
EENPUT (1) = DEN

CONT INUE

G0 T0 118

READ (4,582) TITLE

G0 To 118

Figure 21. The Main Quadruped Nonlinear Gait Program
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178 IF (K ¢ 2) 238 298, 182 147

§88 DO 198 § s 1, 37, &
CALL ACCEPT (5, BETA1, BETA2, BETAI, BETA4)Y
EENPUT(]) s BETAL
EENPUT(]e1) = BETA2
EENPUT{]e2) = BT TA3
199 EENPUT(1+3) = BE 144
TITLEL & BLANKS
TITLEZ2 = BLANKS
TITLES = BLANKS
TITLE4 3 BLANKS
GO Y0 119
280 DO 218 | = 3, &
210 EXECYT(I) = EENPYT(I)
D0 228 ! = 3, 3
gD 228 L s 3§, &
Jr 4 e ] e + 8
Ks 3 el ¢]e+g
228 EXECUT(J) 3 EENPUT(K)
WRITE (6,578) TITLE, EXECUT
GO T0 1318
238 HRITE (7,558) (SENPUT(]), 1 5 3. 6O)
G0 10 1318
209  WRITE (4, 619)
CALL ACCEPT¢ 4,XK1E)
00 250 | = 1, 69
258  EXECUT(]) = EENPUT(])
00 260! s 4, 3
GO 26w L = 3, ¢
Js 4 e ] e o8
Ks 3Je | o] e9
260 EXECUT(J) = EENPUT(K)
HRITECG,5709) TITLE, EXECHT, BLANKS: TITLE
1F (DOTD) 278,298,280
279 WOF s FALSE.,
070 s «DTD
GO TO 298
28 WOF s ,TRUE,
298 CONT INUE
s PHIL ¢ BETAL -~ 4,

)
2

62 s PH]2 » BETA2 - 3,
63 & PNI3 ¢ BETAZ - 3,
G4 = PHI4 ¢ BETAG - 3,
TP s ~§.80881

! 10 = ~3,0008%
TINE = 8,

00Tx = STD 7 PER
LOOP s ,TRUE,

ene SUBROUTINE 'MODEL' eee

[

WUAOOD

] NY & INT(TIME 7/ PER)
FNT = FLOAT (NT)
CT s (TIME « FNT @ PER) 7 PER
€C = (FNT ¢ CT) o STO
00 390 | = 3,4
IF (Gt1)) 318, 318.328

B S T TIPSR PRI - e T M . TN
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320
338

348
359

368
378

388

€O O
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IF (CY - PHI(I)) 338, 348, 340

IF (CT =~ PuI(i)?) 3608, 350, 388

M(1) = ,FALSE,

XNF s GAMMA(L) o STD

GO 10 382

IF (CT - G(I} = 1.8) 350, 352, 339
M(l) s ,TRUE,

XN7 s (GAMMA(I) ¢ PHI{]) - CT) ¢ STO
GO 10 3Ja@

IF (CT = G¢l1)) 378, 379: 339

M(3) = ,TRUE,

XNF 5 (GAMMA(S) « SKI(]) - CT -~ 1,8) s STO
XF(l) & XNF ¢ CG

DEN z XNF « H3i(l)

AQL) = ATAN(DEN/ZR)

XLC(I) = SQRY(OENCDEN + ZNeERj

DACCI) = «DOTX # ZR / (XLC(I)oXLC(I))
DLC(1) s «DO0TX e DEN 7 XLC(])

800 SUBROUTINE 'LEG' eve

CTH = COS(Xx7)

STH = SIN(X?7)

CPH = COS(Xx8)

SPH s SIN(X8)

cPS s COS(X9)

$PS = SIN(:9)

7111 s CYH o CPS

7112 = CTH o SPS

1113 = ~STH

1421 s CPS o STH @ SPH -~ SPS o CPH

1122 = CPS o CPH « SPS o SPH & STH

7123 = CTH » SPH

7131 = SPS o SPN ¢ STH » CPS o CPH

7132 = SPS &« STH o CPH » CPS o SPH

7133 = CPH o CTH

1211 = 0.9

1212 = CPH

7233 s «SPH

7221 = 3.0

7222 3 STH o SPH . CTH

1223 3 STH o CPH / CTH

7231 = 9,2

7232 = SPH /7 CTH

7233 = CPH / CTH

DX7 s 72311 © X12 ¢ 7212 « X131 ¢ 7213 & X12
OX8 3 T221 o X192 ¢ 7222 » X311 & 1223 ¢ X12
DX9 s 7231 ¢ X19 ¢ 7232 o X3i ¢ T233 o x12

DO 48R | s 1, 4

XT4 » XF(]) - X1

YF(]) - X2

Y &1

4T3 @ T111 o X72 » T112 + XT3 # 7143
XT1 @ T121 o XT2 » T122 ¢ XT3 & T123
X8B3 = XT1 o T131 ¢ XT2 o T432 ¢ XT3 » 7133
DL = Xl - Hi(l)

D2 = XB2 - H2(1)

=
k]
pecd
" 8 0 na

Figure Z1. Continued
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D3 = xB3 -~ H3(!} 149
XL(1) = SOQRT(D1eD1 +(24D2 ¢ D3e03)

AC1) = ATAN(D1/D03)

OEN = D2/xL(])

OEN = DEN/SQRT(1, - DENeDEN)

B8(1) = «ATANIDEN)

OxLy = (-9X7OSTHOCPS~DX907112)OXTx © (DX9#Y311~DX705THSSPS)
13XTQ = OX7eCTHOXTI - X4

OxXLe = (DX7071110SPHODX807131~DX907122)OXTi ¢ {(DX7e
171120SPHeDXBoT13240X90T121 )0XT2 ~ (OX70STHeSPH-DXB8eT133) e
2X73 - X8

XL = (DX70711106PH-Dxa07121-DX907132)OXY1 ¢ (DX7eT71126CPK
T 'K68T122+40X9eT131 deXT2 - (DX70STHOCPHeDXB#T123) XT3 - X6
OL(I) = (DxiL1 ® D1 ¢ OxL2 o D2 + DxL3 » D33/ XL (1)

DEN 2 DieD1 ¢ D3¢D3

DALI) = (DXxL1 * D3 » DX 3 o p1) 7 DEN

480 DBCI) & (DL(I) ® D2 « XL(]) » DXL2) 7 (XL(l) o SORT(DEN))

c ®*e s SUBROUTINE °‘CONTRL' ees

00 420 | = 1, 4
IF (M(1)) G0 Tp 410
T™M(l1) = 2,
15¢1) = @,
FEZP(l) s D,
GO 70 429
419 TM(I) 8 XKie(A(1)=AC(])) XK2¢{0A(1)=DAC(I)) o Xx7exsa
TS(I) 3 XK3#B(1) XKe2DB() o XKBwX2 ¢ XK9o XS
FEP(1) » XKS@(XL(1)=XLCC(I)) o XK6o (DL(3)=DLC(])) - xK19
4280  CONTINUE
c .
c ®ee SUBROUTINE 'FANDM' aee
c
00 432 ! = 1, 4
CA s COSCAC]))
SA = SIN(ACL))
C8 = COS(B(1))
S8 = SIN(B(I1))
s

TX(1) TS(1) » Ca
TY(1) = TM(D)
TZ(1) = «TS(1) ® SA
73711 s CA

73742 = SA a SB
T3T13 = CB » SA
173721 s 8,

73122 = B

T3723 s -S8

TIT31 = -S4

TIT3I2 » Sg o CA
T3T33 s CB » CA

FPX = TH(l) 7/ (XL(]) « CB)

FPY s «TS({1) 7 XL(])

Fp2Z = FRP(D)

FX(1) 3 73711 % FPX o T3T12 @ FPY o T3T13 o FP3
FYCI) & T3T21 & FPX o T3722 @ FPY o 13723 ¢ Fp?
FE(1) ® T37T31 & FPyt o T3T32 » FPy » T3133 » FP3
XM(1) ® H2(1) ® F2(1) ~ H3(]) ® Fy(])

Figure 21. Continued
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B YHCT) £ H3(1) ® FX(1) - Hitl) ® FELD) 150
= I 433 FMCI) = HICD) @ FY(D) - H2PD1) » EXUD)
Fi s FX1 ¢ FX2 ¢ FX3 ¢ FX4
= F2 = FYL ¢ Fy2 ¢ FY3 ¢ Fyd
F3 3 F21 ¢ F22 ¢ F23 o Fe
S TL % IX3 & TX2 ¢ TX3 ¢ TX4 ¢ XN3 ¢ XM2 ¢ XH3 ¢ Xn4
{ T2 2 TYL & TY2 ¢ TY3 ¢ TY4 ¢ YML « YH2 ¢ YM3 o YM4
o TS 8 T¥L & T22 ¢ TE3 ¢ T2 & ZHL & EHM2 « FM3 + ZMé
4
g C  ®o® SUBRLUTINE 'XDOY' eee
E W DX4 = X5 ® X32 = X6 & Y31 ¢ F1 /7 XMAS - 32,2 o STH
3 DX5 & X6 ¢ XK1@ = X4 & X12 ¢ F2 7 XMAS ¢ 32,2 » CTH o« SPH
= DR6 = X4 ® X131 = X5 @ X100 ¢ F3 /7 XMAS ¢ 32,2 ¢ CTH » CPH
3 I’ DX18 s ((X]2 - XI3) ® X11 ® X312  T4) 7 X11
g & OX11 = ({X13 - XI1) » X318 ® X12 « T2) / Xi2
DX12 = ((X31 « XI2) & X4d © X351 ¢ T3) /7 XI3
OX§ ® T11% » X4 + T121 ¢ X5 « V131 ® Xé
OX2 = 5112 & 54 ¢ Y122 o X5 ¢ TL32 & x6
DX3 = T35% © X4 « T123 » X5 ¢ TL33 * X6
¢
e ¢ 2ee SECOND Ha,F OF MAIH PROGRAM wae
{ IF (LOOP) GG TO 528
- L00P s ,TRUE,
00 446 3 = 1; 12
. 449 X(I) = (XSC[) ¢ OX(1) ® DY o X(1)) 7/ 2.
[ I7 (TIME - To) 492, 458, 458
g % 4% TD = ¥D ¢ DD
¢
E ¢ eee SUBRGUTINE 'PICTUR' eee
E: ¢
2 XMEG ¢ X1 < CG
e DO 468 ! 5 3, ¢
E- X2 s T441 & H1(1) ¢ T124 @ N2(1) o T131 @ HI(]) « XMCC
| 3 YY ® T482 o H1(I) ¢ T122 o H2(]) ¢ T132 » WI(!1) » x2
53 22 8 T413 » Hi(]) ¢ T123 & H2(l) + Y133 @ H3(1) <« X3
IHXCE) 8 INTC40,8 o XX = 32,0 ® YY) o 265
e IHY(I} = [NT(e12,8 o YY < 48,8 » 23) + 98
IHY(1e4) 3 THY(I) o INT(8B.8 » H3(D))
IF (,NOT, %(1)) GO TO 469
YEF 8 42 « YF(I)
9 IFXLE) & INTOUXF(L) = %3) © 48,8 « YEF © 32,3 ¢ 265
IFY(]) s INTVEF » 12.2) « 99
468  CONTINUE
- CALL ERASE
4 CALL POINT (9, 482, @)
; CALL LINE c589, 498)
CALL POINT (@, 222, ®)

LINE (84, 222)

LINE (8, 198)

LINE (64, 198)
POINT (447, 222 O)
LINE (531, 222)
LINE (447, 198)
LINE {511+ $198)
POIRY (28%, 208, £)

CALL
CaLlL
Cail
CaLL
CALL
Call
Catl
Caly

Figure 21. Continued
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ICGX & INT(XMCG o 48,0 « X% ¢ 32.9) + 265
1CGY = IMT(=X2 ® 12,8 - X3 @ 42.0) ¢ 99
CALL pOINT(ICGX,1CGY,1)

CALL POINT(IHXL,tHYL, )

CaLL LINE (1HX2, 1HY2)

CALL LINE (IHX4, JHYS)

CALL LINE (IHXS, IHYY)

CALL LINE (IHX1» IHY1)

call LINE (IRX3,IHYS)

CALL LINE (IRX2.1HYS)

CALL LINE ¢{HX2,1IMY2}

CALL POINT(THXZ2iHYS,2)

CALL LINE (1MX4,1HYS)

CALL LINE (IHX421HY4)

CALL POINT(IMX4,INY8,8)

CALL LINE (IHX321NY7)

CALL LINE (IHX3I»INY3)

CALL POIXT (IHX3eIHY7,8)

CALL LINE (IHX3.14YS)

DO 478 1 s 1, 4

IF (+NOY, M(I)) GO TO 476
CALL POINT (INX(5), IHY(i), )
Call LINE (1Fx{D), 1FYL1))
CONY INUE

CaLL POINT (155, 25, 6}

CALL S'Mgli (1a0R: 4)

CALL POINY (g, 422, ©)

1F (VOF) GO 10 492

se0 TRIGGER ANIMATION CAMERA asvs

CALL ON

DO 488 1 = 1, %2
XX 3. XONE oo 2
CALL OFFf

CONT INUE

ses REMAINING PORTION OF SECOND NALF OF HAIM PROGRAM eee

{¢ (TIME » vP) 518, 508, 500

TP o TP & DTP

HRITY 46,560) TIME, F1, F2, ¥3, T4 Y2, T3
WRITL (6.598) Xo ™M, TS, F2P, 4, B¢ XL
If (TIME = TRAX) 388, 320, 108

LOOP = FALSE,

00 330 i = 1, 12

XS{1) © X(13

X(J} 3 XS(]) « DX(]) » OV

TIME 3 TIME « OV

60 T0 30¢

READ (5,580)

sToP

ss e FORHATS »e 0

FORMAY (4(yXx. G18,4))
FORMAY t7212(F9.,3, 1X))

Figure 2. Continued
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FORMATILHL , 48X 4AD /S - :
118X, 22HVALUE FGR FOOT NUMBER-. 423, 16K INPUT PARAMETERS
iiIGXaiHioiQXpzﬂzni‘xn1ﬂ3o14XaiH4.131:4ﬁNAHEo4!-11“0530?1??!0”//
21X, 4(F12.5,3X)s3X,AHBETASX, 2OHFO0T DUTY CYCLE/ 74%,4¢F3C.%.3X3:3%
SSHCAMME 4X, SOHX~COORD, OF FOOT AT FOUCH=BOWNAFLE 4TF12,3+30) 03K,
SIHPAL »6X, 44HPHASE OF FOOT AGTION - WHEN FOGT IS SEY DOWNy/
51Xo¢¢?$2e§p3ﬁ)03X06HN(15f7r&Xai?HK'COQﬂQ- OF HIP 3/78%X.1HY/
6xx.4$r12,5.3x).3x.enﬁc2e»3.3x;31nv-coeao oF HiIP 3 1K 30DV COORD,
7/‘9!01H1/13a4(51?.593x393xcéﬁﬂ(39~)o3393§ﬂ§-c0030a ar BiF ¥/
51!041712.5o31)s3Xc?ﬂY7.7§a3$ﬂ?x¢Qﬂﬁ§. oF FU0T IN BODY CS0RO.//
PIXGHSTRIDE © F8,2,4¥ FT.s3X, IHPERIOD @ 1 F5.2.3% BEC, 3K, .
12FHDESIRED #<CNORD, NF BODY 2 sF5.204H TV 73X,
12ENINTECRATION. TIME INTERVAL © F5:0,9H FCeaBK,

YI8HPERICD oY ITUDY = ,F8,2,5H QEC. /1 /7%8%,18H INTT 1AL, CONTIVIONE/
955X, M, 020172, 15/

34X, 2HX a2, FL2, 643K FT:4X,20YSsF12, 4o 3H FT2 4K 209,

4732,6,3M ?T.QXegﬂzssfiigénsﬁFISe13&2ﬁ739F22.§-3R$33'
513.2ﬂilt91205-3%5!3/55!:1H9c2!17X72ﬂ.1/

61X ,2H0%,F12,6, 4% RAD: 2X o 2802,712,6+4¥ RAD,LX,QHUS,

783246, 4K RA041:02”33r712o30§§ﬂi3cix0zﬂaﬁcgignéoiﬂﬁisa
01!02“0'afngbnSﬁRISfiﬁéo!ﬁ"alﬁxotﬁ5;133v8ﬁ3¢39‘olﬁlw
917Xo1H=21TXs1H]

97/767X%:24HB0ODY INERY1AL PACBINTIES 7 .

25X, 741’88 s oF T 120 16X SLHNONEHTS OF INERTIL oo XoAXI® &

1F7 42 11BX cBHY=AXIS » T 200K, ME=ARLS & ,FP.2547

2SPX, 1 THCONTROL eaﬂSYANTf’lénoiﬁioigxnina912391“3012101“40
312X01“9012!01“6(12Xn1ﬂ7r13!=3”3'3330339l9(1‘0'1’:4)#// g
430%, L6HOUTFUT CONSTANTS/Z/8 N S FHRPRINT IRTERVAL & K73 ’
S8y SEC., 19X, 19HDIS?AY INTERVAL s oF7,T:384 8EC. ¢ -

615 LT, B0, W/ AUTE, PHOTZ,)/1H2o25,43%,4A5/7 48X, 258PRINTED

7 gUYNTY SOPMAT/ZZ % sOH(TIHES X022 (FCHCES ON FOOY XeY2),3X,°
823H(TORQUES ON 3(aY X‘V'l)lﬂ‘ln&(’Xo&ﬂo3¢3§X;3(’331R.)/
92¢5xp1“X-9XoIKYo9X01HZo‘X)12(530330:9Xa!“099§01ﬂ9051)l
31H0064X01H-03&9Xpiﬂl)o’XniH’n?ﬂo&"!/l?!o?é“(ﬂl' MOTOR

1 TORGUE i=2-3=4),14X,27H(NIP SPRING TORQUE 1-2-3-4),42X,
228H{VERTICAL LEG FORCE $o2e3=-4)7/7Xs 2TH(FORKARD 1P ANGLE 1-2+3-4)
343X c2THC(LATERAL HIP ANGLE 1‘2'3'{)014x;iE3!LE5 LEMTTH 3=22e3+43//)

FORMAT (2A5)
FORMAT{/12(F8,4,1%)) _
TURRATILGN READY FOR INPUT Nx)
FORDATILEH TTY INPUY XKiBs)

END

Figure 21. Continued
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7] / MACRO,
i / SUBRIUTINE PIC = ROUTINE TO ESTABLISH THE PROPER LEVEL ¢F
- / INDIRECT ADDRESSING FOR CALLING THE SUBRQUTINE SYHBOL AND
/ FOR TRIGGEREING THE ANIMATION CAMERA YI& TME A/D CLOCK T/F.
/
EI +GLOBL 1ADDR
8 JGLOBL  ON,OFF
ADCLON?21624
ADCLOF 8705644
g IADDR §
LAC 1ADDR
TAD (1
- DAC X
g LACY X
} - JuPe 1ADDR
X s
- ON g
i ADCLON
JHPes ON
ofFr 8
ADCLOF
g} JHPs  GFF
(END

men ol

-
i
1 g :
§ Figure 22. Subroutine PIC - Macro Language Subroutine
: for Interphasing the CRT Display System to
i the PDP-9 Computer.
¥
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N(3) = position of a leg inr body coordinates
DEN = intermediate computational variable
DXL{3) = derivative of foct pooition inm hHody coordinates
SPS = sine ¢
XB{3) = position of a leg in body cocrdinates

XT(3) =-position of a foot in ground coardinates
The inpuz to the quadruped gait program is by means of paper cvape
and coneistr of the values of 70 parameters which specify the vody dimen~
sions, ceatrol constants, kinematic parameters cf the particulsr gait,
etc, Each gait has a separate papar tépe, and in additieon any pavameter
value can be changed if desired, and a uew paper tape punched out.
Values of the varicus quantities cdn be printed on a line priater
if desired, and a visual display of the locomoiticn system is produced on
a ecathode ray tube display system attached to the computer.
1his quadruped gait program wzs aiso put oun the faster PDP=-10
computer using a different display package (subroutine LISPL), The
faster computational time of this computer and its better display system
produced displays of the guadruped gaits that approached simulation in

real time,

A+3 Vibrational Analvsis of the Quadruped Locomotion System

The computer program described in Sectior A.2 iz the main non~
lineat quadruped simulation for producing quadruped gaits. This program
needs to be modified to produce a postursl quadruped locomotion gystenm.
For vibrational analysis, the quadruped is assumed to stand on all its

fcur feet with its hips vertically sbove each leg, Therefore, the only

S S SR B S e A S e 25
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changes that are needed, are in the subrouiine MODEL, That is, the
reference model needs to be changed from one describing " marching " type
of motionr tec a ' postural " type,

Aecordingly, subroutine WODEL in the program listing of the wmain
quadruped gait program (see Section 4,2) should be vepiaced by subroutine

POSTUR given below:

C
C k%% SUBROUTINE POSTUR ***
c

DO 300 I =1, 4

AC(I) = 0.0

XLC(I) = ZR

DLC(I} = 0.0

M{I) = .TRUE.
300 XF(1) = HI(I)

This converts the program to a quadruped postural system simula«
tion. No other changes are necessary for obtaining the nonlinear system
response to the different vibraticnal modes.

This quadruped postural system simulztion was used to compute the
nonlinear system response by exciting it with each of the twelve eigen-~
vectors computed from the linearized quadruped locomotion system modal
matrices using subroutine NEEVB: The nonlinear system rxesponse tc a

eigenvector describing one of the x #xis vibrational mcdes is given in

Tabie 6.

A.4 Linearized System Response of the Quadruped Locomotion System
Figure 23 is the main ccaputer pragram used to determine tae

linearized system for the quadruped locomotion system. The expressions

derived ia Chapter IV for the lineavized quadruped aystem {see equations

(4=39) through (4-79)), are used tu compute the eigenvalues and eigen-

- e - T s el b e e e Ty
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vectors of each modal matrix. After this, the linear system response is
computed from subroutine LINEFAR, Figure 24 is a listing of subroutine
LINEAR., Table 5 gives the linear system response for one of the x axis

vibraticnal unodes,

4.5 Iaverted Pendulum System Computer Programs

This section describes the programs used for the simulation of
the invarted pendulum system, Figure 25 is a listing of the program used
to compute stabilizing control constants for the small motion stability
of the inverted vendulum system with the mass pivoted a distance r ¥ 0
below ite center of gravity. This program uses the general algorithm
derived in Section 6.6.2. The program allows the designer to select the
required control constants to satisfy the Routh~Hurwitz criterion.

Figure 26 shows the listing used for the simulation of the inver-
ted pendulum system, This program uses the noniinear system equations
describec in Section 3.4,

For the PDP-9 computer, this program should be uced with the
Macro subroutine PIC for CRT display purposes, This program can be used
with any digital computer if the necessary modifications are made tc take
into account the particular display package used. This inverted pendulum
simulation was also programmed on the faster POP-1C computer using the

display package DISPL,

A.6 Quadruped Pace and Biped Walk Programs
For the simulation of the gquadruped pace =nd alsc the type of
biped walk considered in this research, the main quadruped gait program

of 3ection A.2 was modified as follows,
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FORTRAN ROGRAM,

PROGRAN 111 _FIND THE EIGENVALUES AND ESGENVECTORS OF THE REAL NON-
SYMMETRIC NMATRICES DESCRIBING THE VARIOLS VIBRATIUMAL MODES OF THE
QUADRUPED POSTURAL SYSTEN. THIS PROCRAM ALSO CORPUTES THE “FREE
MOYEON® CF THE LINEARIZED SVYSTEM.

THE MAIN PROGRAM USES BODY DINENSIONS AND COKTROL COMSYANIS AS
INPUTS AND COMPUTES THE MCMEKTS OF INERTIA OF THE 80DY ALONG THE
Xe Yo 2 AXES. TiHE MODAL RATRICES ARE THEN COMPUTED. MAIN THEN
CAz.LS SUBROUTINE NSEVB WHICH LOMPUTES THE EIGENVALUES AND THE
CORRESPONDING EIGENVECTORS FOR EACH MODAL MATRIX. FINALLY, THE
LINEAR SY3STEM RESPONSE IS CCMPUTED FOR EACH EIGENVECTOR BY
SUBROUTINE LINEAR.

ODIMENSION A(20,20), ER(20)y ERC(20), VRE20,20)y VI£20,20i¢
LEBNDI 20} ¢ ¥YBNDI20,201,8120,20)

DOUBLE PRECISICN RES,y SR, §!

REAL IXXeiYYel1ZZ,MAWLD

NMAX=20

READ(5,10) mp

FORMAT(13)

LCOUNT=0

FFCLCCUNTY .EQ.MM)} GO TG 37C

READ(S920) AA¢BBCoLOsMA

FORMAT(BF10.4)}

COMPUYE THE MCMENYS OF INERYIA FOR A RECTANGULAR PRISM WITH SIDES
2Ay 28, 2Ce.

IXX={ (MAS{BB*GBeLeC))/3,.0)

IvY=( (MAS(AASAACCSC))/3.0)

12T={ (MAT(AASAA+B0%088))/3,0)

HRITE(6+30) AAy BBy Co LOy MA, IXX, I¥YY, 122

FORMAY (/LTXe OIMEHSIONS OF B0DY® o/ /0® As® o F5,242Xe*Bn? oFS5.242X°C
130 3F5.2:2Ko ' LENGTHR® gF5,292Xe "MASSR* o FS.2¢ /717X " MOMENTS TGF INERTY
2UIAL (/IS K s NAXTY g F Voo g2Xo® VYR qF 70 892Xo I2Ein 5T 4.7

READ(S,40) M

FORMAT(IS)

KOUNT =0

IFIXKOUNT.EQ. N3 GO TO 360

READ(S5,50) CA,DCA,C8,0CB,CLo0CLOCX,CY,0CY

FORMAT({8F10.4)

HRITEL(6,60) CAyDCALCB,DCH CL(OCLL,DCX,CY,LDCY

FORIBAT(/Z1TX o *CONTROL CONSTARTS /70 CAS® oF10.5¢2Xo*DCAR? o F10.4,2X
19°CB=" oF10.492Xy '0CB224F 10,4979 CLSY (F10o492X¢°0CL=* ,F10.4451X,°0C
2Xn? gF10.493Xa'CY=2 s F10.490/7016Xs°0CYnEF10.4,7//)

NCOUNTs]

N=b

CONPUTE THE SYSTER MATRIX FOR THE X - MODE.

Billseld=Ge0

B8il,2)=1,0

B‘ 1.3"0;0

s m——— e o - e

Figure 23. Main Program for Computing the Modal Matrices, and

che Linear System Response of the Quadruped
Locomction System.
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8{l¢4)=0.0

Bl2e1) = (32,2/L0) ~_(1{4.00CA)/I{MASLUONLC))

Bi2¢2) = ~{{4,030CA}/(MASLOSLOI) ¢ ((4.0%DCX) /i HAVLO)?

Bl2¢3) = ((32,20C1/L0) — ((4.00(L0+CICCA)/INASLOSLOY )

0(204) = ({4, 0%(LD+CISDCAN/INASLOELOD))

843+19=0.0

8(3+2)=0,0

8(3,53)=0.0

8(344)=1,0

8(4s1) =((32.20MA4)/7{ISYSLO)) ~ ((4.00CAS(LOCC)I/ZC1YYSLOSLO))
Blay,2) = ((4.08(L0+CI®OCXI/CIYYSLO)) = ((4.00(LOCCISOCAI/(1YYSLOS
1403}

B8l4y3) = ~((4.08{LOCISCLOCCISCA)/CIVYYSLOSLO)) ¢ ((32.20MASCS (LOC
103708 YX®L0) ) ~ ((4.0CAARTAARCL )/LYY) .

3laeb]) = <L {4,00(L0+CIS(LOCCISDCAN/LIYYSLOSLO)) = ({4£.00AASAASDCL)
1201YY)}

WRITE(H,70)

10 FORMAT(3X,'¢8X~-AX1S TRANSLATIONAL £ ROTATIONAL MODAL MATRIX®e®?,//)
GO 70 1000 g
900 NCOUNT=2
N=4
C CORPUTE THE SYSTEM MATRIX FOR THE Y - MODE,

8(i.12=0.0

8l1e2)%1.0

BlL.:420,0

B8(le8)=0,0_ L.

B8(2:1) = {32.2/0L0) = ((4.00CB)/(MASLO®LCI? ~ ,(4.08CY)/(MASLO})
Bl242) = ={£4.000CB)/INASLOSLO)) ~ ((4.0%DCY)/INASLO))

Bl293) ==((32.28C)/LD) ¢ ((4.0%1L0*CISCBI/INASLOSLD))

BlZ2:4) = ((4,0%(L0+CISDCRBI/(MASLOSLO))

8(3+1)=0.0

8(3:,21=0.9

8({3,3)=0,0

8(3+41=1.0

Bl e10)5~({32,26MAC)/LIXXSLO)} ¢ ((4,08CBO(LOCCIHZLINXSLOSLO)) ¢
114, 06{LT¢CIOCYR/LIXXSLO))

Blae2) = ((4.00(LOCCISDCYI/ZIIXXOLO)) ¢ ((4.0¢(LOCCI*DCB) /(IXX®LO®
1L0)) .- e e o aea ..

B8{4¢3) = ~{(4.08(L0OeCIS(LOCCINCR)/CIXXROLOMLO)Y) ¢ ((32.28MASCH{LOC
105401XX0L0)) ~ £04.08880880CL }/1XX)

B8(494) = ~((4.006(LOC)SILO+CISDCBI/{IXXSLOSLO)) ~ ((4.0*BB2BASDCL )

1/741xx1)
WRITE(6430) AR, B8, Co LO, NA, IXX, IVY, 122
MRLVE(C +<0) CALDCA+CB,LCALCLo0CLDCKLCYL0CY .
WRITE(6,400)
100 Eglest!gg;’!9¥:‘x&sﬁIBAHSLAIlﬁNlL £ ADRIATIONAL MODAL MATRIX®®®,//)
1

800  NCOUNT=) e

Figure 23. Continued
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N=2

R CO%PUYE THE SYSTCM MATRIX FOR YHE TRARSLATIONAL 2 -~ AXIS MODE.
Bile1?=0.0
Blis2053.0
Bt2:1)s-{4,00CL)/MA
812,2)-({6,086DCLI/NA
WRITE(6+30) AAy B8y Cs LOy MA, IXX,y IVY, {22
HRITE(6+60) CADCACBOCB oCL +OCL ¢DCX LY (DCY
WRITE(&9130)

130 FORMAT(8X '8 -AX1IS TRANSLATIONAL MODAL NATRIXSS®,,/)
D0 135 | = 14N

135 MRITE(E4210) (BLIsd)adnleN)
GO T0 220

700 NCCUNT =4
N=2

c COMPUTE THE ROTATIONAL Z ~ AXIS NODE.
B8{1s11=0,.0
B{l,2)=1.0
Bl291) = ((32.2¢MAS{AASAACBBSBB)I/(I222L0)) - ((6.08(AASAAS B BB®
18B*CA} }/(122¢L0*L0))
Bl2¢2)15—4,0¢(BB*BBADCA+AASAASDCE) /(L I220L0%L0)
BRITE(6,30) AR, BB, Lo LOs MAs IXXe 1YY, 111
WRITE(6960) CADCA,CByCCBCL,OCL DCXHCY,0CY
HRITEL6,1702

170 FORMAT(BXy7882-AX 5 ROYATIONAL HODAL PATRIXS®®,7/)
DO 128 § = 1,N

1?75 MRITEL6,210) (B(1oJ)eJd=l4N)
GO TO 220

1000 CONTINUE
00 190 1 = 1, N

190 WMRITE(6,200) (BL1,d)od=lN}

200 FORMAYL'0,4F13.6)  _

210 FGRMAT{(%0%,13X,2F13.6)

220 DG 230 1 =i, A
DO 230 J =1, M

230 Alled) = Bl1.J)
8IG = 0.0
DD 260 1 mle A
00 240 4 =%, N

240 BIG = ABAXLI(BIG,ABS(AL1,43))
CALL NSEVB{ANMAXoN:ERETI YR VI s EBND,¥BND)
MRITE16,250)

250  FORMAT(1MO,16X,*COMPUTED EIGENVALUES®,27)
MRITE{6,260) e

260 FORMATIIX " NDo® ¢ 3Xo *REAL PART Y, TXo * IMAG. PART? ,6X,*ERROR DOUND¢ ./}
[0 270 | =ie N

270  WRITE(6,280) I, ER(L)y EXCID, EBNDCID

280  FORMAT(IX,02:3{1XeF13:9)e/)

oo b

g

Figure z3. Continued
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00 310 4 =1, N

NRITE(6,290) J

FORMAT (/4 13X, *COMPUTED EIGENVECTOR NG,=°.15,/)
WRITE(6,+300) .
FORMAT(13Xy "REAL PART? o 7Xo® SNAG. PART®¢6X SERROR BOUND® /)
00 310 1 =1, A

WRITE(6+9320) VREI9JDoVIAL4J) o VBND(T,J)
FORMAT(1X33(1XeF15.9)9/)

RES=0.000

00 340 I= 1o N

D0 340 J= 1, N
SRa={VRIT+JISERIJI-VILI,SI0EL(JD))
SI==(VRIL oJISEL(J)CER(JIISYI(],4))

4 330 K =1, N C -

SR=SREALT +KISVR 49 J)

SI = 351 ¢ All,K) * Vi{KeJ}

RES = DMAX1(RES,DOSQRT(SRé22 ¢ 5[322))
RESsRES/BIG

WRITE(S,350) RES

TORMAT (/721X *LARGESY _RESIDUAL®?3E15.97/)
CALL LINEARINGERIEIZVR,VI}

GO TO (900+300+7002s NCCUNT

KOUNT=KOUNT+]

GO TO 45

CONY INUE

LCOQUNT=LCCUNT+]

GO V0 15

stae

END

Figure 23. Continued
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SUBROUTINE LINEARIN-ERHELWVRoVI)
DIMENSION ER{20! ¢E1(20)eVR(204201¢VI(20¢20F4X(20044),Y(2004%),
1T(1103,0120,207,£120,420)

DO 30 J=1,N

00 30 K=1N

DI K220 13VR (JyK)

E1JoK)I=D.146VI{I,K)

DD 101 K=i,N

WRITE{6449)

FORMAT{ 1X +*FIGENVALUE *?

WRITE(6,50) (ER(K),FI(K )

FORMAT (751Xt ALPHAS o FL o P93 Xe *OMEGAR®,F12,74/)
WRITE(H,52) K

FORMAT/,16Xs 0. 15CUMPUTED EIGENVFCTCR NCox%,11,/7,18X0'RTAL PART"
127X, % IMAG, PART',/)

WRITFL6e51) (DL oK) 4E{L KD oL =1 N}

FORMAT(15XsE15.%¢2X9F15.94/)

WRITF{6,31)

FORMAT(/ 422X+ SLINEAR SYSTEM RESPONSF®,/)
WRITF 16435}

FORMATIZIX P eV e/ o 1X s VTTMET 4 11X OV 4 1RX, TX¥, 24X, %07, 14X, 01,
L/1IH® 445X ¥~ 414K~/ /)

N0 100 §=1,101

DO 100 J=i,N

TE1) = (1-13/710,0

DEN=ER{K)I*T (1)

IFTDFN.GTY,100.0) GO YO ID1

Ql=FXP{DEN)

Q2=CNSLET(KISTIT}?

Q2=SIN(FItX)ST(I})

A=01%Q2

B=Q1%Q2

X(T 2 JTZA®DIJ oK} -BOETI XY
Y(1sJ)=B*O0{sK)+A*E(J (K}

WRIVE(6,104) (TUHY o XUM, 1) o X{Me2) X IM,3),XTMy4) yM=1,101}
FORMATIF7.4,4F15.9)

CONTINUF
RETURN
tHD T T

Subroutine LINEAR - Forrran Suproutine for
Computing thelinear System Response for each

Eigenvector of a Modal Matrix of the Quadruped
Pcstural Systen.
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FORTRAN
PROGRAM TO FIND STABILIZING CONTROL CONSTANTS FOR AN
INVERTED PENDULUM SYSTEM NITH THE MASS PIVOTED BELOW THE
Tk 200Y., anD HAVING ONE MASSLESS LEG OF CONSTANT LEKGTM,
SUPPORTED BRY A ™ FIXED ™ FOQOT.
M s MASS OF TYHE 800Y
XL # LEG LENGTH
¥R s OISTANCE OF THE 80DY CENTER OF GRAVITY ABOYE THE PlvoT
X1 = MOMENT OF INERYIA OF THE BODY
XK1 THROUGH XK4 = CONTROL CONSTANTS
Ry THROUGH Fgp 3 ROUTH COEFFICIEMTS
X1 = ANGLE "% LEG TO THE YERTICAL
X2 = ANGLE CF HODY (LONG SIDE) YO THE HORJZONTAL
LAMMA X RE / K2
wRITELS, 2)
FORMAT (3X,210 TTYY INPUT 8, L. R, 1 )
CALL AZCEPT(4, XMe XLo XR, Xi)
WRITEL 4,327 WMs XL» XR, X1
FORMATIOX cIrMy 7o 1ML o 7X e 3R, 2X 2 NI /Z78K,4F7,37)
XA = XL ® (XL * XR)
Xt = (XI/X+) » KR & XR ¢ X{ o XH
AC = XA/ZXP
IF (xk, 0, 0a) GO T0 S@
X) s XL/7XR
wh1TE(4ed0) xU
4p FOMMAT (4%, a-L/NE/)
5@ COMTHLULE
wRITE(S, 6¢)
'Y FORMAT SN s /8 2,F7,37)
wRITECE, 7¢)
78 FORMAT (62 CHOOSE GAMNA SO THAT 1T IS GREATER THAN A8
18UT LESS Twat L/R/}
WRITE(4,8%)
8¢ FORMAT L3¢N rMOOSE GAMMA O TTYY )
CALL ACCEPY?4, GAMMA}
wWBRITE(4,90)
92 FORMAT{I4MTCRGUE SXKErX2o XK 20N 4+ XKIOX o XK XTI )
iee WRITE(4,313¢)
11 FORMAT (21N CHOOSE K2, K3 ON TTY/)
Cali ACCEPT(4, XXZ2, XX3)
XK& x GAMMA 5 XK2
XE 8 (ARI/¥C) = ((32.28XKeXLaXL)/XE) » ((32,2eX[eXLoXL®
AL XReCAMVAY )/ (XBR(XASGCANNE-XE}))
XF = {(XRexxt/xL) - 32,2 ® XM 9 XR
12¢ WRITE(4,132)
130 FORMATIIX,3HK2B,F1f,4, 4% K33,F10,4,4K Kds,F106,4,
14r xE2,F30,4,4H xXFs,Fi@.4/)
WRITE(4:148)
140 FORMAT(44m CHOOSE KI LESS THAN XE» BUY GREATER THAN XF/)
CALL ACCEPTY(4, XKY?
Re s X1 » ¥, e X{
Ri s XA ® xK4 = X[t & XK2
RZ = XA @ (XK3 = XM & XL 032,2) = XB ¢ XKQ
R3 s 32,2 ¢ (XXZ o XL = XK€ & XM}
®
k]

Ty i) 3 223
N L
Lo B
? .

=

N aaOMmOOo OO aaan

[y '
N

“
h

LU 32,2 @ (32,2 ®« XM © XR o X, ¢ KNS 3 XL ~ AK3 & XF)
RS €(R1 o R2 = RE » R3)/RY)

Figure 25. Program for Computing Stabilizing Control Constants
for the Small Motion Stability of the Iaverted
Pendulum System,

B N o - T e o R A R S Bt




158

16p
172
183

™ P A Py g s

Ré 3 ((R3 o RS « R1 & Ke)/sRS)

WRITE(%,152)

Rd, R1, R2, R3, R4

FOR"IT(IXoBHRP'nF1$.4,4Xo4NR1 8,F19,4,4x,4HR2 5,F18,4/6x,

14HR3 3,F19,4,
WRITE(4,16.)
FORMAT(1X, 4R
“RJTE“017/’
FORMAT (1%, 4
ARITEt 4,18,

5%, 4HR4 2,F1¢,44)

D, wH

S B, F19,3,.5%, 4HR6 2.510.3/)
XK1, XX2, XK3, XK 4

Ki%,F18,4,54 k2 2,F18,4,5H K3 ¢

FORMAY (41w Yypg =1,2.1 Y0 CHANGE Klo(K?aK3)vﬁESYARTI’
IF (k) 140,112,1¢

STaP
END

Figure 25. Continued
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FORTRAN ]
AGUTIHE TO STABILIRE & SELF-TOROULING INYERTRD PENDULUN

wliM THE HaSS PLYOTED BELOW TwE BJDY, AND MAVING ONE HASSLESS
LEG OF CONSTANT LENGTH, WIlTH & ™ FIXED v FOCT,

Tn1S PROGRAM USaS THE ZULER-PREDICTOR CORMECTOR METHCD OF
INTEGRAT ION,

THIS PROGRAN CAX BY USEYL w[TH AWY OIGIVAL COKPUTER FROVIDED
IWt. PROPESR waD iy 1CATIGNS ARE MADE TO SUBRQUTIWE PICTYUR CORRESe
PONNEING TO “xF PARYICULRR DIPLAY PACKRAGE uSED.

X% x MASS oF THE B8QDY

X, = LEMGT# OF THE LEG

xR = DISTANCE OF THE CENYER COF GRAVITY ABOVE THE PIVOY

Xl = MOMENT OF INCRTIA OF THRE 8T0Y

¥ri: XR2: %x3, K4 = CONTROL CONGTANTS

€1 = ANGLE OF LEG 70 THE VERTICAL

X2 = ANGLE nF THE BOOY(LONG SIDEJ TO THE MOURIFONTAL

1X1, Y3 = CIXEN DISPLAY COSRDINATES OF T#Z FoOV

014G & 172 oF 400y DIACONAL (FY} e SCaLE “ACTLR =3/2eF1240.2
THETA 7 ANGLE OF 8007 DIAGONAL YO BOQY LONG S51DE

LGGICAL NOURY, LOOP, HEAD#HG

DINENSION XS{A)s X(4), DXE4), IX(8)s 1Y(8:, VITLE(CA), A(6),
1 ci3). XX{4) ]

GOrMON TORKOAi3‘2'53:*40‘51‘6ﬁC195213300X100xz09‘3c0x‘
COMMONZ IMPNT2DIAG, THETA, X140 X1, XL o ¥R, CTPT, TENDJCRTINGC,
IXRY, ¥R, XK T, N4, %3 X2> XTI, X4 TITLEL, FITLER, TITLES, TITLES
EQUIVALESCE In(13, X1, I0X¢1:,0%X1 0, (TITLECL I VITLEL)
SOUIYALENET (IMUL), IXE) CIYEE) TYLda XKD XK1Y oCACLD ALY
14(C(2).CY)

DATA HEADNG  FALSE /6 IXi,0Y1/7255,58/,X0NE/ 000/

IadR = FaD - =ITITLE(L))

IF(F-CADNG)Y GO 10 1318

HEACNG 3 ,THUE

wRITE(4. 427,

FORMAT(L 4,224 TTY INPUT DIAG,, THETAZ)

CALiL ACCEPT (4,JIAG.THETA)

WRITE(G,13:2

FOR®AT(28K TTY INPUT K=1 FOR NER TITLE )

CALL ACCEPT:4,K)

IF(K E0.2) GC TO 182

READ(4,142) TITLE

FORMAT {445

COATIHUE

wRITE( 42367

FORMAY(L1X,7, HMASS, INERTIA,LEG LENGYH,LENGTM XR, CALCINC,
1 PRINTINC. ENOTIME, CRTINC/)

CALL ACCEPT(4, XM, X], XL, XR, cT, PY, YERD, CRTINC)
wRITECSs27w) xMs X+ Yie XRo CTe PTs TEND,» CRYINC
ron“"‘lx.‘4.102x0f5.114‘0r5-105x0F501'5Xor5010‘xor704'Sxorsh\'
1 €X,F6.37?

IF (CRYINC) 188, 198, 193

CRTINC & = CRTINC

NOC‘” 8 ".‘LSEO

GO T0 283

NOCRY = ,TRUE,

WRITE(4,212)

FORMAT(1X,17HCONTROL CORSTANTS/)

Figure 26. Msin Progrza for the Nenliwnsar Inverted
Penduium Syatem Siumulationm.
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g CALL ACCEPT(4,XK1,XXZ, XK3, X4}
. ARITE(S,22.7) XK1, XK2» XK3, XK&

228 FORMAT(IX, d¢iXoF 3@ 23/
g 235  HRITZC(4,24.)
3 248 FORMAY(SX 2 HINITIAL STATE VECTOR,)

- CALL ACCEPFY (4, X1, %2, x3,s X4}
WRITE(S,25:3 X1y X2, R3. K4
. 53 FORMAT(1xs4F 33,47}

E HRITECH, 28 )

248 L SURNAT{ZX,4uTIME 4 18X, L2HSTATE VECTOR,16X%,6HTOR0QUE/Z33 Y,
§ 12HXS- 0 TR X2, SRIZHAT 1 BX, 2L KG /)

C .
{. #e8FIRST WALF OF THE 12l PHOCRAXose
C

TIME a0 @,2
: PTINE 2 ob, 061
3 YU s '@ef‘o.‘.'l
LO0P = ,TPuZ,
27¢ TORK 2 XK36Y¥2 2+ XK2e¢X4 ¢ XK3oX1 ¢ XK%eX3

- L1 = XN 2 yL e Ni

i A2 % XM 3 XU o XR B CQAS{X1 %2}
a3 = XM 6 L1 & XR & SinIXE =X2)
48 £ 32,2 & Xu & XL 2 SI%N(X1)

B AS % 32,2 4 x» & X@ ¢ $IN(XZ)
46 2 {X] 5 x¥ & XE o XR;

i €1 2 (A% ~ 43 & X4 & X4 . YORKS
C2 £ {33 « 43 » x3 X9 + YORK)
CS ¢ €21 = ag = A2 ¢ A2)
DAY = X3

I D%z s x4

OX3 = ((As @ €L « A2 » T23/CH)
VR4 5 ({43 & C2 « 22 » {13403
IF (LQOPS Gf 10 378
Lo = YR,
0L 282 5 ¢ 1, 4
289 X{1% 2 {x@13 o Dx11) & £7 » xStlyyzs2.n
IF(TIME - 105 3208, 292, 297
292 T0 2 1D o CRYING
o
C #oeSUBROUTIAE FICTURcee
¢

Fosane.)

1

XX 2 X2 ¢ T-ETA
Y =2 X2 = Tugta
IAL = DIaG ¢ COSixX)

U

it =z DI&g « cOSty)

ICL = plaG o 3IN(XX)

iDL 2 DIAG & QINEY:®

IXZ 5 INT(oX{ = SIN({X1) & 423.8) ¢ {x31
1v2 & I6T( xg & CI3(XL) o 48.8) o 1v1
IX3 8 INT{<XR ® SIN(XZ) o 42 @% « X2
13 = INTC XA 9 COStX2) o 45.9) « 1lY2
[X¢ 8 AL ¢ IXE

‘¥4 3 JCL o I¥S

IXS 3 1BL o I1XJ

ivh = DL o (v3

IX6 = »JAL o IX3 N
IYe & <120 « Y3

sae Al

Figure 26. Lontinued
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1x7 = =186 ¢ 143

1Y7 s =iDL ¢ 1YS

CALL ERASE

chLL POINT(S, 82, D)
Cali LINEL2:13, 4207
calt POINTOING, (Y4, 8)
CaLt LivE¢lxd, 1Y2)
cALL LINECIX3, 1V3)
Call PCINT({X4r (Y&, )
CALL LINELIXS, L¥3)
cabL LINECIXE, 1Ye)
capl. LINESIX?, 1¥Y7)
cabt LINECIXG, TVY4)
catl POINT(L95: 232, B)
Catl SYRBOL{IZUR, &)
CALL POINT(. . 463, 8}
1F (NDCUKTY w0 Y0 32¢

¢
¢ esaTRIAGER AMICATIAN CAMFRA®we

29y

Saz

31¢
32¢
c

JU 295 1 = t. B2
xG = HONL oe 2
Caly 0N

30 $2¢ 1 2 1, M
X3 8 UONE e 2
cALL CFF

N 316 1 o3 1. D
xQ = xo’(z »e 2
CONT IRUE

€ soe SECOND HaLF OF THE MAIN PROGRAMses

C
338
34¢

354

388
37

3¢a

k14
T

F (TIME - PTIMEY 368, 34, 348

PIINE = 2T £ + F7

aRITEL6235) Ting, X3, X2, X3, X4, TORK
CORMPATLLEX,¥S . 708X, 4F 32,8, 3XsF108,5)

IF (TIME - TEND) 278, 270, 398

LOOP = FALSE,

DO 382 1 = 3, 4

XS{1: # x(1)

XCly = XS5¢1) » OX{ly o CV

TIME & Timg o CT

GQ Y0 272

SRITE(4, 4273

FUBEAT(1X,45400 YOU WISH TO CHANGE ANY PHYSICAL CONSTANTS? )
CALL ACCEPTY ¢4, XA -

IF (%A ,EG, 1,8} GO YO 3188

wR1TS(4,45¢)

FORMAT(1X,44HD0 YOU WISH 1O CHANGE ANY CONTROL CONSTANTS? )
CALL ACCEPT(4: XB)

if (X5 €0, 1.83 GO 1D 282

G0 70 238

STO?

END

Figuye 26. Continued
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The expression for the lateral comtrol torque TS(I} 1in subroutine

CONTRL corresponding to equation (6-11i) was replaced by the expression

TS(I) = XK3 * X8 %+ XK4 * B(I) + XK8 * (X8+B(I)) + ¥K9 #* {(X10+DB(I1}}

corresponding to eyustion (6-114),

In addition; the subroutine PICTUR was appropriately modified to

display ithe quadruped pace and the biped walk as shown in Figures 19 and

20 respectively. The values of the control constants K3, KA’ KB’ and Kq
were obtained by taking one half of the values of the stabilizing contyo.

constants Kl through K, obtained by applying the inverted pendulum Routh-

Hurwitz analysis algorithm to the body in its lateral {(y-z) plane.
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